LogoLogo
Illumina KnowledgeIllumina SupportSign In
Partek
  • Home
Partek
  • Overview
  • Partek Flow
    • Frequently Asked Questions
      • General
      • Visualization
      • Statistics
      • Biological Interpretation
      • How to cite Partek software
    • Quick Start Guide
    • Installation Guide
      • Minimum System Requirements
      • Single Cell Toolkit System Requirements
      • Single Node Installation
      • Single Node Amazon Web Services Deployment
      • Multi-Node Cluster Installation
      • Creating Restricted User Folders within the Partek Flow server
      • Updating Partek Flow
      • Uninstalling Partek Flow
      • Dependencies
      • Docker and Docker-compose
      • Java KeyStore and Certificates
      • Kubernetes
    • Live Training Event Recordings
      • Bulk RNA-Seq Analysis Training
      • Basic scRNA-Seq Analysis & Visualization Training
      • Advanced scRNA-Seq Data Analysis Training
      • Bulk RNA-Seq and ATAC-Seq Integration Training
      • Spatial Transcriptomics Data Analysis Training
      • scRNA and scATAC Data Integration Training
    • Tutorials
      • Creating and Analyzing a Project
        • Creating a New Project
        • The Metadata Tab
        • The Analyses Tab
        • The Log Tab
        • The Project Settings Tab
        • The Attachments Tab
        • Project Management
        • Importing a GEO / ENA project
      • Bulk RNA-Seq
        • Importing the tutorial data set
        • Adding sample attributes
        • Running pre-alignment QA/QC
        • Trimming bases and filtering reads
        • Aligning to a reference genome
        • Running post-alignment QA/QC
        • Quantifying to an annotation model
        • Filtering features
        • Normalizing counts
        • Exploring the data set with PCA
        • Performing differential expression analysis with DESeq2
        • Viewing DESeq2 results and creating a gene list
        • Viewing a dot plot for a gene
        • Visualizing gene expression in Chromosome view
        • Generating a hierarchical clustering heatmap
        • Performing biological interpretation
        • Saving and running a pipeline
      • Analyzing Single Cell RNA-Seq Data
      • Analyzing CITE-Seq Data
        • Importing Feature Barcoding Data
        • Data Processing
        • Dimensionality Reduction and Clustering
        • Classifying Cells
        • Differentially Expressed Proteins and Genes
      • 10x Genomics Visium Spatial Data Analysis
        • Start with pre-processed Space Ranger output files
        • Start with 10x Genomics Visium fastq files
        • Spatial data analysis steps
        • View tissue images
      • 10x Genomics Xenium Data Analysis
        • Import 10x Genomics Xenium Analyzer output
        • Process Xenium data
        • Perform Exploratory analysis
        • Make comparisons using Compute biomarkers and Biological interpretation
      • Single Cell RNA-Seq Analysis (Multiple Samples)
        • Getting started with the tutorial data set
        • Classify cells from multiple samples using t-SNE
        • Compare expression between cell types with multiple samples
      • Analyzing Single Cell ATAC-Seq data
      • Analyzing Illumina Infinium Methylation array data
      • NanoString CosMx Tutorial
        • Importing CosMx data
        • QA/QC, data processing, and dimension reduction
        • Cell typing
        • Classify subpopulations & differential expression analysis
    • User Manual
      • Interface
      • Importing Data
        • SFTP File Transfer Instructions
        • Import single cell data
        • Importing 10x Genomics Matrix Files
        • Importing and Demultiplexing Illumina BCL Files
        • Partek Flow Uploader for Ion Torrent
        • Importing 10x Genomics .bcl Files
        • Import a GEO / ENA project
      • Task Menu
        • Task actions
        • Data summary report
        • QA/QC
          • Pre-alignment QA/QC
          • ERCC Assessment
          • Post-alignment QA/QC
          • Coverage Report
          • Validate Variants
          • Feature distribution
          • Single-cell QA/QC
          • Cell barcode QA/QC
        • Pre-alignment tools
          • Trim bases
          • Trim adapters
          • Filter reads
          • Trim tags
        • Post-alignment tools
          • Filter alignments
          • Convert alignments to unaligned reads
          • Combine alignments
          • Deduplicate UMIs
          • Downscale alignments
        • Annotation/Metadata
          • Annotate cells
          • Annotation report
          • Publish cell attributes to project
          • Attribute report
          • Annotate Visium image
        • Pre-analysis tools
          • Generate group cell counts
          • Pool cells
          • Split matrix
          • Hashtag demultiplexing
          • Merge matrices
          • Descriptive statistics
          • Spot clean
        • Aligners
        • Quantification
          • Quantify to annotation model (Partek E/M)
          • Quantify to transcriptome (Cufflinks)
          • Quantify to reference (Partek E/M)
          • Quantify regions
          • HTSeq
          • Count feature barcodes
          • Salmon
        • Filtering
          • Filter features
          • Filter groups (samples or cells)
          • Filter barcodes
          • Split by attribute
          • Downsample Cells
        • Normalization and scaling
          • Impute low expression
          • Impute missing values
          • Normalization
          • Normalize to baseline
          • Normalize to housekeeping genes
          • Scran deconvolution
          • SCTransform
          • TF-IDF normalization
        • Batch removal
          • General linear model
          • Harmony
          • Seurat3 integration
        • Differential Analysis
          • GSA
          • ANOVA/LIMMA-trend/LIMMA-voom
          • Kruskal-Wallis
          • Detect alt-splicing (ANOVA)
          • DESeq2(R) vs DESeq2
          • Hurdle model
          • Compute biomarkers
          • Transcript Expression Analysis - Cuffdiff
          • Troubleshooting
        • Survival Analysis with Cox regression and Kaplan-Meier analysis - Partek Flow
        • Exploratory Analysis
          • Graph-based Clustering
          • K-means Clustering
          • Compare Clusters
          • PCA
          • t-SNE
          • UMAP
          • Hierarchical Clustering
          • AUCell
          • Find multimodal neighbors
          • SVD
          • CellPhoneDB
        • Trajectory Analysis
          • Trajectory Analysis (Monocle 2)
          • Trajectory Analysis (Monocle 3)
        • Variant Callers
          • SAMtools
          • FreeBayes
          • LoFreq
        • Variant Analysis
          • Fusion Gene Detection
          • Annotate Variants
          • Annotate Variants (SnpEff)
          • Annotate Variants (VEP)
          • Filter Variants
          • Summarize Cohort Mutations
          • Combine Variants
        • Copy Number Analysis (CNVkit)
        • Peak Callers (MACS2)
        • Peak analysis
          • Annotate Peaks
          • Filter peaks
          • Promoter sum matrix
        • Motif Detection
        • Metagenomics
          • Kraken
          • Alpha & beta diversity
          • Choose taxonomic level
        • 10x Genomics
          • Cell Ranger - Gene Expression
          • Cell Ranger - ATAC
          • Space Ranger
          • STARsolo
        • V(D)J Analysis
        • Biological Interpretation
          • Gene Set Enrichment
          • GSEA
        • Correlation
          • Correlation analysis
          • Sample Correlation
          • Similarity matrix
        • Export
        • Classification
        • Feature linkage analysis
      • Data Viewer
      • Visualizations
        • Chromosome View
          • Launching the Chromosome View
          • Navigating Through the View
          • Selecting Data Tracks for Visualization
          • Visualizing the Results Using Data Tracks
          • Annotating the Results
          • Customizing the View
        • Dot Plot
        • Volcano Plot
        • List Generator (Venn Diagram)
        • Sankey Plot
        • Transcription Start Site (TSS) Plot
        • Sources of variation plot
        • Interaction Plots
        • Correlation Plot
        • Pie Chart
        • Histograms
        • Heatmaps
        • PCA, UMAP and tSNE scatter plots
        • Stacked Violin Plot
      • Pipelines
        • Making a Pipeline
        • Running a Pipeline
        • Downloading and Sharing a Pipeline
        • Previewing a Pipeline
        • Deleting a Pipeline
        • Importing a Pipeline
      • Large File Viewer
      • Settings
        • Personal
          • My Profile
          • My Preferences
          • Forgot Password
        • System
          • System Information
          • System Preferences
          • LDAP Configuration
        • Components
          • Filter Management
          • Library File Management
            • Library File Management Settings
            • Library File Management Page
            • Selecting an Assembly
            • Library Files
            • Update Library Index
            • Creating an Assembly on the Library File Management Page
            • Adding Library Files on the Library File Management Page
            • Adding a Reference Sequence
            • Adding a Cytoband
            • Adding Reference Aligner Indexes
            • Adding a Gene Set
            • Adding a Variant Annotation Database
            • Adding a SnpEff Variant Database
            • Adding a Variant Effect Predictor (VEP) Database
            • Adding an Annotation Model
            • Adding Aligner Indexes Based on an Annotation Model
            • Adding Library Files from Within a Project
            • Microarray Library Files
            • Adding Prep kit
            • Removing Library Files
          • Option Set Management
          • Task Management
          • Pipeline managment
          • Lists
        • Access
          • User Management
          • Group Management
          • Licensing
          • Directory Permissions
          • Access Control Log
          • Failed Logins
          • Orphaned files
        • Usage
          • System Queue
          • System Resources
          • Usage Report
      • Server Management
        • Backing Up the Database
        • System Administrator Guide (Linux)
        • Diagnosing Issues
        • Moving Data
        • Partek Flow Worker Allocator
      • Enterprise Features and Toolkits
        • REST API
          • REST API Command List
      • Microarray Toolkit
        • Importing Custom Microarrays
      • Glossary
    • Webinars
    • Blog Posts
      • How to select the best single cell quality control thresholds
      • Cellular Differentiation Using Trajectory Analysis & Single Cell RNA-Seq Data
      • Spatial transcriptomics—what’s the big deal and why you should do it
      • Detecting differential gene expression in single cell RNA-Seq analysis
      • Batch remover for single cell data
      • How to perform single cell RNA sequencing: exploratory analysis
      • Single Cell Multiomics Analysis: Strategies for Integration
      • Pathway Analysis: ANOVA vs. Enrichment Analysis
      • Studying Immunotherapy with Multiomics: Simultaneous Measurement of Gene and Protein
      • How to Integrate ChIP-Seq and RNA-Seq Data
      • Enjoy Responsibly!
      • To Boldly Go…
      • Get to Know Your Cell
      • Aliens Among Us: How I Analyzed Non-Model Organism Data in Partek Flow
    • White Papers
      • Understanding Reads in RNA-Seq Analysis
      • RNA-Seq Quantification
      • Gene-specific Analysis
      • Gene Set ANOVA
      • Partek Flow Security
      • Single Cell Scaling
      • UMI Deduplication in Partek Flow
      • Mapping error statistics
    • Release Notes
      • Release Notes Archive - Partek Flow 10
  • Partek Genomics Suite
    • Installation Guide
      • Minimum System Requirements
      • Computer Host ID Retrieval
      • Node Locked Installation
        • Windows Installation
        • Macintosh Installation
      • Floating/Locked Floating Installation
        • Linux Installation
          • FlexNet Installation on Linux
        • Installing FlexNet on Windows
        • License Server FAQ's
        • Client Computer Connection to License Server
      • Uninstalling Partek Genomics Suite
      • Updating to Version 7.0
      • License Types
      • Installation FAQs
    • User Manual
      • Lists
        • Importing a text file list
        • Adding annotations to a gene list
        • Tasks available for a gene list
        • Starting with a list of genomic regions
        • Starting with a list of SNPs
        • Importing a BED file
        • Additional options for lists
      • Annotation
      • Hierarchical Clustering Analysis
      • Gene Ontology ANOVA
        • Implementation Details
        • Configuring the GO ANOVA Dialog
        • Performing GO ANOVA
        • GO ANOVA Output
        • GO ANOVA Visualisations
        • Recommended Filters
      • Visualizations
        • Dot Plot
        • Profile Plot
        • XY Plot / Bar Chart
        • Volcano Plot
        • Scatter Plot and MA Plot
        • Sort Rows by Prototype
        • Manhattan Plot
        • Violin Plot
      • Visualizing NGS Data
      • Chromosome View
      • Methylation Workflows
      • Trio/Duo Analysis
      • Association Analysis
      • LOH detection with an allele ratio spreadsheet
      • Import data from Agilent feature extraction software
      • Illumina GenomeStudio Plugin
        • Import gene expression data
        • Import Genotype Data
        • Export CNV data to Illumina GenomeStudio using Partek report plug-in
        • Import data from Illumina GenomeStudio using Partek plug-in
        • Export methylation data to Illumina GenomeStudio using Partek report plug-in
    • Tutorials
      • Gene Expression Analysis
        • Importing Affymetrix CEL files
        • Adding sample information
        • Exploring gene expression data
        • Identifying differentially expressed genes using ANOVA
        • Creating gene lists from ANOVA results
        • Performing hierarchical clustering
        • Adding gene annotations
      • Gene Expression Analysis with Batch Effects
        • Importing the data set
        • Adding an annotation link
        • Exploring the data set with PCA
        • Detect differentially expressed genes with ANOVA
        • Removing batch effects
        • Creating a gene list using the Venn Diagram
        • Hierarchical clustering using a gene list
        • GO enrichment using a gene list
      • Differential Methylation Analysis
        • Import and normalize methylation data
        • Annotate samples
        • Perform data quality analysis and quality control
        • Detect differentially methylated loci
        • Create a marker list
        • Filter loci with the interactive filter
        • Obtain methylation signatures
        • Visualize methylation at each locus
        • Perform gene set and pathway analysis
        • Detect differentially methylated CpG islands
        • Optional: Add UCSC CpG island annotations
        • Optional: Use MethylationEPIC for CNV analysis
        • Optional: Import a Partek Project from Genome Studio
      • Partek Pathway
        • Performing pathway enrichment
        • Analyzing pathway enrichment in Partek Genomics Suite
        • Analyzing pathway enrichment in Partek Pathway
      • Gene Ontology Enrichment
        • Open a zipped project
        • Perform GO enrichment analysis
      • RNA-Seq Analysis
        • Importing aligned reads
        • Adding sample attributes
        • RNA-Seq mRNA quantification
        • Detecting differential expression in RNA-Seq data
        • Creating a gene list with advanced options
        • Visualizing mapped reads with Chromosome View
        • Visualizing differential isoform expression
        • Gene Ontology (GO) Enrichment
        • Analyzing the unexplained regions spreadsheet
      • ChIP-Seq Analysis
        • Importing ChIP-Seq data
        • Quality control for ChIP-Seq samples
        • Detecting peaks and enriched regions in ChIP-Seq data
        • Creating a list of enriched regions
        • Identifying novel and known motifs
        • Finding nearest genomic features
        • Visualizing reads and enriched regions
      • Survival Analysis
        • Kaplan-Meier Survival Analysis
        • Cox Regression Analysis
      • Model Selection Tool
      • Copy Number Analysis
        • Importing Copy Number Data
        • Exploring the data with PCA
        • Creating Copy Number from Allele Intensities
        • Detecting regions with copy number variation
        • Creating a list of regions
        • Finding genes with copy number variation
        • Optional: Additional options for annotating regions
        • Optional: GC wave correction for Affymetrix CEL files
        • Optional: Integrating copy number with LOH and AsCN
      • Loss of Heterozygosity
      • Allele Specific Copy Number
      • Gene Expression - Aging Study
      • miRNA Expression and Integration with Gene Expression
        • Analyze differentially expressed miRNAs
        • Integrate miRNA and Gene Expression data
      • Promoter Tiling Array
      • Human Exon Array
        • Importing Human Exon Array
        • Gene-level Analysis of Exon Array
        • Alt-Splicing Analysis of Exon Array
      • NCBI GEO Importer
    • Webinars
    • White Papers
      • Allele Intensity Import
      • Allele-Specific Copy Number
      • Calculating Genotype Likelihoods
      • ChIP-Seq Peak Detection
      • Detect Regions of Significance
      • Genomic Segmentation
      • Loss of Heterozygosity Analysis
      • Motif Discovery Methods
      • Partek Genomics Suite Security
      • Reads in RNA-Seq
      • RNA-Seq Methods
      • Unpaired Copy Number Estimation
    • Release Notes
    • Version Updates
    • TeamViewer Instructions
  • Getting Help
    • TeamViewer Instructions
Powered by GitBook
On this page
  • Split matrix
  • Filter low-quality cells
  • Normalization
  • Merge Protein and mRNA data
  • Collapsing tasks to simplify the pipeline
  • References
  • Additional Assistance

Was this helpful?

Export as PDF
  1. Partek Flow
  2. Tutorials
  3. Analyzing CITE-Seq Data

Data Processing

PreviousImporting Feature Barcoding DataNextDimensionality Reduction and Clustering

Last updated 7 months ago

Was this helpful?

Split matrix

The Single cell counts data node contains two different types of data, mRNA expression and protein expression. So that we can process these two different types of data separately, we will split the data by data type.

  • Click the Single cell counts data node

  • Click Pre-analysis tools in the toolbox

  • Click Split by feature type

A rectangular task node will be created along with two circular data nodes, one for each data type (Figure 1). The labels for these data types are determined by features.csv file used when processing the data with Cell Ranger. Here, our data is labeled Gene Expression, for the mRNA data, and Antibody Capture, for the protein data.

Filter low-quality cells

An important step in analyzing single cell RNA-Seq data is to filter out low-quality cells. A few examples of low-quality cells are doublets, cells damaged during cell isolation, or cells with too few counts to be analyzed. In a CITE-Seq experiment, protein aggregation in the antibody staining reagents can cause a cell to have a very high number of counts. These are low-quality cells that can be excluded. Additionally, if all cells in a data set are expected to show a baseline level of expression for one of the antibodies used, it may be appropriate to filter out cells with very low counts or a low number of detected features. You can do this in Partek Flow using the Single cell QA/QC task.

We will start with the protein data.

  • Click the Antibody Capture data node

  • Click QA/QC in the toolbox

  • Click Single Cell QA/QC

This produces a Single-cell QA/QC task node (Figure 2).

  • Double-click the Single cell QA/QC task node to open the task report

The Single cell QA/QC report opens in a new data viewer session. There are interactive violin plots showing the most commonly used quality metrics for each cell: the total count per cell and the number of detected features per cell (Figure 3). Each point on the plots is a cell and the violins illustrate the distribution of values for the y-axis metric.

For this analysis, we will set a maximum counts threshold to exclude potential protein aggregates and, because we expect every cell to be bound by several antibodies, we will also set a minimum counts threshold.

  • Select one of the plots on the canvas

  • In the Select & Filter icon on the left under Tools, set the Counts threshold to keep cells between 500 and 20000 (Figure 4)

  • Click Apply observation filter...

  • Select the Antibody Capture data node as input in the pipeline preview (Figure 5)

  • Click Select

You will see a message telling you a new task has been enqueued.

  • Click OK to dismiss the message

  • Click the project name at the top to go back to the Analyses tab

  • Your browser may warn you that any unsaved changes to the data viewer session will be lost. Ignore this message and proceed to the Analyses tab

A new task, Filter counts, is added to the Analyses tab. This task produces a new Filter counts data node.

Next, we can repeat this process for the Gene Expression data node.

  • Click the Gene Expression data node

  • Click the QA/QC section in the toolbox

  • Click Single Cell QA/QC

This produces a Single-cell QA/QC task node

  • Double-click the Single cell QA/QC task node to open the task report

The task report lists the number of counts per cell, the number of detected features per cell, the percentage of mitochondrial reads per cell, and the percentage of ribosomal counts per cell in four violin plots (Figure 6). For this analysis, we will set maximum and minimum thresholds for total counts and detected genes to exclude potential doublets and a maximum mitochondrial reads percentage filter to exclude potential dead or dying cells. There is no need to apply a filter based on the percentage of ribosomal counts in this tutorial.

  • In the Selection card on the right, set the Counts threshold to keep cells between 1500 and 15000

  • Set the Detected features to keep cells between 400 and 4000

  • Set the % Mitochondrial counts to keep cells between 0% and 20% (Figure 6)

  • Click Apply observations filter

  • Select the Gene Expression data node as input in the pipeline preview

  • Click Select

  • Click OK to dismiss the message about the task being enqueued

  • Click the project name at the top to go back to the Analyses tab

  • Your browser may warn you that any unsaved changes to the data viewer session will be lost. Ignore this message and proceed to the Analyses tab

A new task, Filter counts, is added to the Analyses tab. This task produces a new Filter counts data node (Figure 7)

Normalization

After excluding low-quality cells, we can normalize the data.

We will start with the protein data.

  • Click the Filtered counts data node produced by filtering the Antibody Capture data node

  • Click Normalization and scaling in the toolbox

  • Click Normalization

  • Click Finish to run (Figure 8)

The recommended normalization for protein data includes the following steps: Add 1, Divide by Geometric mean, Add 1, Log base 2. This is a variant of Centered log-ratio (CLR), which was used to normalize antibody capture protein counts data in the paper that introduced CITE-Seq [1] and in subsequent publications on similar assays [2. 3]. CLR normalization includes the following steps: Add 1, Divide by Geometric mean, Add 1, log base e. Normalizing the protein data to base 2 instead of e allows for better integration with gene expression data further downstream. If you would prefer to use CLR, click and drag CLR from the panel on the left to the right. If you do choose to use CLR, we recommend making sure the gene expression data is normalized to the base e, to allow for smoother integration further downstream.

Normalization produces a Normalized counts data node on the Antibody Capture branch of the pipeline.

Next, we can normalize the mRNA data. We will use the recommended normalization method in Partek Flow, which accounts for differences in library size, or the total number of UMI counts, per cell, adds 1 and log2 transforms the data.

  • Click the Filtered counts data node produced by filtering the Gene Expression data node

  • Click the Normalization and scaling section in the toolbox

  • Click Normalization

  • Click Finish to run (Figure 9)

Normalization produces a Normalized counts data node on the Gene Expression branch of the pipeline (Figure 10).

Merge Protein and mRNA data

For quality filtering and normalization, we needed to have the two data types separate as the processing steps were distinct. For downstream analysis, we want to be able to analyze protein and mRNA data together. To bring the two data types back together, we will merge the two normalized counts data nodes.

  • Click the Normalized counts data node on the Antibody Capture branch of the pipeline

  • Click Pre-analysis tools in the toolbox

  • Click Merge matrices

  • Click Select data node to launch the data node selector

Data nodes that can be merged with the Antibody Capture branch Normalized counts data node are shown in color (Figure 11).

  • Click the Normalized counts data node on the Gene Expression branch of the pipeline (Figure 11)

  • Click Select

  • Click Finish to run the task

The output is a Merged counts data node (Figure 12). This data node will include the normalized counts of our protein and mRNA data. The intersection of cells from the two input data nodes is retained so only cells that passed the quality filter for both protein and mRNA data will be included in the Merged counts data node.

Collapsing tasks to simplify the pipeline

To simplify the appearance of the pipeline, we can group task nodes into a single collapsed task. Here, we will collapse the filtering and normalization steps.

  • Right-click the Split by feature type task node

  • Choose Collapse tasks from the pop-up dialog (Figure 13)

Tasks that can be selected for the beginning and end of the collapsed section of the pipeline are highlighted in purple (Figure 14). We have chosen the Split matrix task as the start and we can choose Merge matrices as the end of the collapsed section.

  • Click the Merge matrices task to choose it as the end of the collapsed section

  • Name the Collapsed task Data processing

  • Click Save (Figure 15)

The new collapsed task, Data processing, appears as a single rectangular task node (Figure 16).

To view the tasks in Data processing, we can expand the collapsed task.

  • Double-click Data processing to expand it or right-click and choose Expand collapsed task

When expanded, the collapsed task is shown as a shaded section of the pipeline with a title bar (Figure 17).

  • Double-click the Data processing title bar to re-collapse

References

[1] Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., ... & Smibert, P. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nature methods, 14(9), 865.

[2] Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B. Z., Mauck, W. M., ... & Satija, R. (2018). Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome biology, 19(1), 224.

[3] Mimitou, E., Cheng, A., Montalbano, A., Hao, S., Stoeckius, M., Legut, M., ... & Satija, R. (2018). Expanding the CITE-seq tool-kit: Detection of proteins, transcriptomes, clonotypes and CRISPR perturbations with multiplexing, in a single assay. bioRxiv, 466466.

Additional Assistance

Click under Filter on the right

Click under Filter on the right

Click the button

Click the button

To re-collapse the task, you can double click the title bar or click the icon in the title bar. To remove the collapsed task, you can click the . Please note that this will not remove tasks, just the grouping.

If you need additional assistance, please visit to submit a help ticket or find phone numbers for regional support.

our support page
Split matrix
Filter low-quality cells
Normalization
Merge Protein and mRNA data
Collapsing tasks to simplify the pipeline
References
Figure 1. Split by feature type produces two data nodes, one for each data type
Figure 2. Single cell QA/QC produces a task node
Figure 3. Each cell is shown as a point on the plot.
Figure 4. Filtering low quality cells based on protein expression data
Figure 5. After the Apply filter button is selected, you will be presented with a preview of your pipeline. You need to select the appropriate data node to apply the filtering to. In this case, the Antibody capture node
Figure 6. Filtering low quality cells based on gene expression data
Figure 7. Antibody Capture and Gene Expression data have been filtered to remove low quality cells
Figure 8. Recommended normalization for protein count data
Figure 9. Recommended normalization for single cell gene expression data
Figure 10. The two normalization tasks produce Normalized counts data nodes
Figure 11. Select the normalizated gene expression counts to merge the protein counts with
Figure 12. Merged counts output
Figure 13. Choosing the first task node to generate a collapsed task
Figure 14. Tasks that can be the start or end of a collapsed task are shown in purple
Figure 15. Naming the collapsed task
Figure 16. Collapsed tasks are represented by a single task node
Figure 17. Expanding a collapsed task to show its components