LogoLogo
Illumina KnowledgeIllumina SupportSign In
Partek
  • Home
Partek
  • Overview
  • Partek Flow
    • Frequently Asked Questions
      • General
      • Visualization
      • Statistics
      • Biological Interpretation
      • How to cite Partek software
    • Quick Start Guide
    • Installation Guide
      • Minimum System Requirements
      • Single Cell Toolkit System Requirements
      • Single Node Installation
      • Single Node Amazon Web Services Deployment
      • Multi-Node Cluster Installation
      • Creating Restricted User Folders within the Partek Flow server
      • Updating Partek Flow
      • Uninstalling Partek Flow
      • Dependencies
      • Docker and Docker-compose
      • Java KeyStore and Certificates
      • Kubernetes
    • Live Training Event Recordings
      • Bulk RNA-Seq Analysis Training
      • Basic scRNA-Seq Analysis & Visualization Training
      • Advanced scRNA-Seq Data Analysis Training
      • Bulk RNA-Seq and ATAC-Seq Integration Training
      • Spatial Transcriptomics Data Analysis Training
      • scRNA and scATAC Data Integration Training
    • Tutorials
      • Creating and Analyzing a Project
        • Creating a New Project
        • The Metadata Tab
        • The Analyses Tab
        • The Log Tab
        • The Project Settings Tab
        • The Attachments Tab
        • Project Management
        • Importing a GEO / ENA project
      • Bulk RNA-Seq
        • Importing the tutorial data set
        • Adding sample attributes
        • Running pre-alignment QA/QC
        • Trimming bases and filtering reads
        • Aligning to a reference genome
        • Running post-alignment QA/QC
        • Quantifying to an annotation model
        • Filtering features
        • Normalizing counts
        • Exploring the data set with PCA
        • Performing differential expression analysis with DESeq2
        • Viewing DESeq2 results and creating a gene list
        • Viewing a dot plot for a gene
        • Visualizing gene expression in Chromosome view
        • Generating a hierarchical clustering heatmap
        • Performing biological interpretation
        • Saving and running a pipeline
      • Analyzing Single Cell RNA-Seq Data
      • Analyzing CITE-Seq Data
        • Importing Feature Barcoding Data
        • Data Processing
        • Dimensionality Reduction and Clustering
        • Classifying Cells
        • Differentially Expressed Proteins and Genes
      • 10x Genomics Visium Spatial Data Analysis
        • Start with pre-processed Space Ranger output files
        • Start with 10x Genomics Visium fastq files
        • Spatial data analysis steps
        • View tissue images
      • 10x Genomics Xenium Data Analysis
        • Import 10x Genomics Xenium Analyzer output
        • Process Xenium data
        • Perform Exploratory analysis
        • Make comparisons using Compute biomarkers and Biological interpretation
      • Single Cell RNA-Seq Analysis (Multiple Samples)
        • Getting started with the tutorial data set
        • Classify cells from multiple samples using t-SNE
        • Compare expression between cell types with multiple samples
      • Analyzing Single Cell ATAC-Seq data
      • Analyzing Illumina Infinium Methylation array data
      • NanoString CosMx Tutorial
        • Importing CosMx data
        • QA/QC, data processing, and dimension reduction
        • Cell typing
        • Classify subpopulations & differential expression analysis
    • User Manual
      • Interface
      • Importing Data
        • SFTP File Transfer Instructions
        • Import single cell data
        • Importing 10x Genomics Matrix Files
        • Importing and Demultiplexing Illumina BCL Files
        • Partek Flow Uploader for Ion Torrent
        • Importing 10x Genomics .bcl Files
        • Import a GEO / ENA project
      • Task Menu
        • Task actions
        • Data summary report
        • QA/QC
          • Pre-alignment QA/QC
          • ERCC Assessment
          • Post-alignment QA/QC
          • Coverage Report
          • Validate Variants
          • Feature distribution
          • Single-cell QA/QC
          • Cell barcode QA/QC
        • Pre-alignment tools
          • Trim bases
          • Trim adapters
          • Filter reads
          • Trim tags
        • Post-alignment tools
          • Filter alignments
          • Convert alignments to unaligned reads
          • Combine alignments
          • Deduplicate UMIs
          • Downscale alignments
        • Annotation/Metadata
          • Annotate cells
          • Annotation report
          • Publish cell attributes to project
          • Attribute report
          • Annotate Visium image
        • Pre-analysis tools
          • Generate group cell counts
          • Pool cells
          • Split matrix
          • Hashtag demultiplexing
          • Merge matrices
          • Descriptive statistics
          • Spot clean
        • Aligners
        • Quantification
          • Quantify to annotation model (Partek E/M)
          • Quantify to transcriptome (Cufflinks)
          • Quantify to reference (Partek E/M)
          • Quantify regions
          • HTSeq
          • Count feature barcodes
          • Salmon
        • Filtering
          • Filter features
          • Filter groups (samples or cells)
          • Filter barcodes
          • Split by attribute
          • Downsample Cells
        • Normalization and scaling
          • Impute low expression
          • Impute missing values
          • Normalization
          • Normalize to baseline
          • Normalize to housekeeping genes
          • Scran deconvolution
          • SCTransform
          • TF-IDF normalization
        • Batch removal
          • General linear model
          • Harmony
          • Seurat3 integration
        • Differential Analysis
          • GSA
          • ANOVA/LIMMA-trend/LIMMA-voom
          • Kruskal-Wallis
          • Detect alt-splicing (ANOVA)
          • DESeq2(R) vs DESeq2
          • Hurdle model
          • Compute biomarkers
          • Transcript Expression Analysis - Cuffdiff
          • Troubleshooting
        • Survival Analysis with Cox regression and Kaplan-Meier analysis - Partek Flow
        • Exploratory Analysis
          • Graph-based Clustering
          • K-means Clustering
          • Compare Clusters
          • PCA
          • t-SNE
          • UMAP
          • Hierarchical Clustering
          • AUCell
          • Find multimodal neighbors
          • SVD
          • CellPhoneDB
        • Trajectory Analysis
          • Trajectory Analysis (Monocle 2)
          • Trajectory Analysis (Monocle 3)
        • Variant Callers
          • SAMtools
          • FreeBayes
          • LoFreq
        • Variant Analysis
          • Fusion Gene Detection
          • Annotate Variants
          • Annotate Variants (SnpEff)
          • Annotate Variants (VEP)
          • Filter Variants
          • Summarize Cohort Mutations
          • Combine Variants
        • Copy Number Analysis (CNVkit)
        • Peak Callers (MACS2)
        • Peak analysis
          • Annotate Peaks
          • Filter peaks
          • Promoter sum matrix
        • Motif Detection
        • Metagenomics
          • Kraken
          • Alpha & beta diversity
          • Choose taxonomic level
        • 10x Genomics
          • Cell Ranger - Gene Expression
          • Cell Ranger - ATAC
          • Space Ranger
          • STARsolo
        • V(D)J Analysis
        • Biological Interpretation
          • Gene Set Enrichment
          • GSEA
        • Correlation
          • Correlation analysis
          • Sample Correlation
          • Similarity matrix
        • Export
        • Classification
        • Feature linkage analysis
      • Data Viewer
      • Visualizations
        • Chromosome View
          • Launching the Chromosome View
          • Navigating Through the View
          • Selecting Data Tracks for Visualization
          • Visualizing the Results Using Data Tracks
          • Annotating the Results
          • Customizing the View
        • Dot Plot
        • Volcano Plot
        • List Generator (Venn Diagram)
        • Sankey Plot
        • Transcription Start Site (TSS) Plot
        • Sources of variation plot
        • Interaction Plots
        • Correlation Plot
        • Pie Chart
        • Histograms
        • Heatmaps
        • PCA, UMAP and tSNE scatter plots
        • Stacked Violin Plot
      • Pipelines
        • Making a Pipeline
        • Running a Pipeline
        • Downloading and Sharing a Pipeline
        • Previewing a Pipeline
        • Deleting a Pipeline
        • Importing a Pipeline
      • Large File Viewer
      • Settings
        • Personal
          • My Profile
          • My Preferences
          • Forgot Password
        • System
          • System Information
          • System Preferences
          • LDAP Configuration
        • Components
          • Filter Management
          • Library File Management
            • Library File Management Settings
            • Library File Management Page
            • Selecting an Assembly
            • Library Files
            • Update Library Index
            • Creating an Assembly on the Library File Management Page
            • Adding Library Files on the Library File Management Page
            • Adding a Reference Sequence
            • Adding a Cytoband
            • Adding Reference Aligner Indexes
            • Adding a Gene Set
            • Adding a Variant Annotation Database
            • Adding a SnpEff Variant Database
            • Adding a Variant Effect Predictor (VEP) Database
            • Adding an Annotation Model
            • Adding Aligner Indexes Based on an Annotation Model
            • Adding Library Files from Within a Project
            • Microarray Library Files
            • Adding Prep kit
            • Removing Library Files
          • Option Set Management
          • Task Management
          • Pipeline managment
          • Lists
        • Access
          • User Management
          • Group Management
          • Licensing
          • Directory Permissions
          • Access Control Log
          • Failed Logins
          • Orphaned files
        • Usage
          • System Queue
          • System Resources
          • Usage Report
      • Server Management
        • Backing Up the Database
        • System Administrator Guide (Linux)
        • Diagnosing Issues
        • Moving Data
        • Partek Flow Worker Allocator
      • Enterprise Features and Toolkits
        • REST API
          • REST API Command List
      • Microarray Toolkit
        • Importing Custom Microarrays
      • Glossary
    • Webinars
    • Blog Posts
      • How to select the best single cell quality control thresholds
      • Cellular Differentiation Using Trajectory Analysis & Single Cell RNA-Seq Data
      • Spatial transcriptomics—what’s the big deal and why you should do it
      • Detecting differential gene expression in single cell RNA-Seq analysis
      • Batch remover for single cell data
      • How to perform single cell RNA sequencing: exploratory analysis
      • Single Cell Multiomics Analysis: Strategies for Integration
      • Pathway Analysis: ANOVA vs. Enrichment Analysis
      • Studying Immunotherapy with Multiomics: Simultaneous Measurement of Gene and Protein
      • How to Integrate ChIP-Seq and RNA-Seq Data
      • Enjoy Responsibly!
      • To Boldly Go…
      • Get to Know Your Cell
      • Aliens Among Us: How I Analyzed Non-Model Organism Data in Partek Flow
    • White Papers
      • Understanding Reads in RNA-Seq Analysis
      • RNA-Seq Quantification
      • Gene-specific Analysis
      • Gene Set ANOVA
      • Partek Flow Security
      • Single Cell Scaling
      • UMI Deduplication in Partek Flow
      • Mapping error statistics
    • Release Notes
      • Release Notes Archive - Partek Flow 10
  • Partek Genomics Suite
    • Installation Guide
      • Minimum System Requirements
      • Computer Host ID Retrieval
      • Node Locked Installation
        • Windows Installation
        • Macintosh Installation
      • Floating/Locked Floating Installation
        • Linux Installation
          • FlexNet Installation on Linux
        • Installing FlexNet on Windows
        • License Server FAQ's
        • Client Computer Connection to License Server
      • Uninstalling Partek Genomics Suite
      • Updating to Version 7.0
      • License Types
      • Installation FAQs
    • User Manual
      • Lists
        • Importing a text file list
        • Adding annotations to a gene list
        • Tasks available for a gene list
        • Starting with a list of genomic regions
        • Starting with a list of SNPs
        • Importing a BED file
        • Additional options for lists
      • Annotation
      • Hierarchical Clustering Analysis
      • Gene Ontology ANOVA
        • Implementation Details
        • Configuring the GO ANOVA Dialog
        • Performing GO ANOVA
        • GO ANOVA Output
        • GO ANOVA Visualisations
        • Recommended Filters
      • Visualizations
        • Dot Plot
        • Profile Plot
        • XY Plot / Bar Chart
        • Volcano Plot
        • Scatter Plot and MA Plot
        • Sort Rows by Prototype
        • Manhattan Plot
        • Violin Plot
      • Visualizing NGS Data
      • Chromosome View
      • Methylation Workflows
      • Trio/Duo Analysis
      • Association Analysis
      • LOH detection with an allele ratio spreadsheet
      • Import data from Agilent feature extraction software
      • Illumina GenomeStudio Plugin
        • Import gene expression data
        • Import Genotype Data
        • Export CNV data to Illumina GenomeStudio using Partek report plug-in
        • Import data from Illumina GenomeStudio using Partek plug-in
        • Export methylation data to Illumina GenomeStudio using Partek report plug-in
    • Tutorials
      • Gene Expression Analysis
        • Importing Affymetrix CEL files
        • Adding sample information
        • Exploring gene expression data
        • Identifying differentially expressed genes using ANOVA
        • Creating gene lists from ANOVA results
        • Performing hierarchical clustering
        • Adding gene annotations
      • Gene Expression Analysis with Batch Effects
        • Importing the data set
        • Adding an annotation link
        • Exploring the data set with PCA
        • Detect differentially expressed genes with ANOVA
        • Removing batch effects
        • Creating a gene list using the Venn Diagram
        • Hierarchical clustering using a gene list
        • GO enrichment using a gene list
      • Differential Methylation Analysis
        • Import and normalize methylation data
        • Annotate samples
        • Perform data quality analysis and quality control
        • Detect differentially methylated loci
        • Create a marker list
        • Filter loci with the interactive filter
        • Obtain methylation signatures
        • Visualize methylation at each locus
        • Perform gene set and pathway analysis
        • Detect differentially methylated CpG islands
        • Optional: Add UCSC CpG island annotations
        • Optional: Use MethylationEPIC for CNV analysis
        • Optional: Import a Partek Project from Genome Studio
      • Partek Pathway
        • Performing pathway enrichment
        • Analyzing pathway enrichment in Partek Genomics Suite
        • Analyzing pathway enrichment in Partek Pathway
      • Gene Ontology Enrichment
        • Open a zipped project
        • Perform GO enrichment analysis
      • RNA-Seq Analysis
        • Importing aligned reads
        • Adding sample attributes
        • RNA-Seq mRNA quantification
        • Detecting differential expression in RNA-Seq data
        • Creating a gene list with advanced options
        • Visualizing mapped reads with Chromosome View
        • Visualizing differential isoform expression
        • Gene Ontology (GO) Enrichment
        • Analyzing the unexplained regions spreadsheet
      • ChIP-Seq Analysis
        • Importing ChIP-Seq data
        • Quality control for ChIP-Seq samples
        • Detecting peaks and enriched regions in ChIP-Seq data
        • Creating a list of enriched regions
        • Identifying novel and known motifs
        • Finding nearest genomic features
        • Visualizing reads and enriched regions
      • Survival Analysis
        • Kaplan-Meier Survival Analysis
        • Cox Regression Analysis
      • Model Selection Tool
      • Copy Number Analysis
        • Importing Copy Number Data
        • Exploring the data with PCA
        • Creating Copy Number from Allele Intensities
        • Detecting regions with copy number variation
        • Creating a list of regions
        • Finding genes with copy number variation
        • Optional: Additional options for annotating regions
        • Optional: GC wave correction for Affymetrix CEL files
        • Optional: Integrating copy number with LOH and AsCN
      • Loss of Heterozygosity
      • Allele Specific Copy Number
      • Gene Expression - Aging Study
      • miRNA Expression and Integration with Gene Expression
        • Analyze differentially expressed miRNAs
        • Integrate miRNA and Gene Expression data
      • Promoter Tiling Array
      • Human Exon Array
        • Importing Human Exon Array
        • Gene-level Analysis of Exon Array
        • Alt-Splicing Analysis of Exon Array
      • NCBI GEO Importer
    • Webinars
    • White Papers
      • Allele Intensity Import
      • Allele-Specific Copy Number
      • Calculating Genotype Likelihoods
      • ChIP-Seq Peak Detection
      • Detect Regions of Significance
      • Genomic Segmentation
      • Loss of Heterozygosity Analysis
      • Motif Discovery Methods
      • Partek Genomics Suite Security
      • Reads in RNA-Seq
      • RNA-Seq Methods
      • Unpaired Copy Number Estimation
    • Release Notes
    • Version Updates
    • TeamViewer Instructions
  • Getting Help
    • TeamViewer Instructions
Powered by GitBook
On this page
  • Discover de novo motifs
  • Description of Motif Detection Output
  • Sequence Logo Window
  • Motifs spreadsheet
  • Motif_instances spreadsheet
  • Search JASPAR for known motifs
  • Generating a list of regions containing a motif
  • References
  • Additional Assistance

Was this helpful?

Export as PDF
  1. Partek Genomics Suite
  2. Tutorials
  3. ChIP-Seq Analysis

Identifying novel and known motifs

PreviousCreating a list of enriched regionsNextFinding nearest genomic features

Last updated 7 months ago

Was this helpful?

With a list of enriched regions, you can now identify recurring patterns or motifs in these regions. Transcription factors bind sites throughout the genome, but each has a characteristic sequence it binds - a consensus sequence that appears in most of its binding sites. By searching for binding site motifs, you can determine the consensus sequence for a transcription factor and predict potential binding locations throughout the genome that may not have been found in your experiment.

Partek Genomics Suite detects de novo motifs using the Gibbs motif sampler (Neuwald et al., 1995) and can search for known transcription factor binding sites using a database such as .

Discover de novo motifs

  • Select Motif Discovery from the Peak Analysis section of the ChIP-Seq workflow

  • Select Discover de novo motifs

  • Select OK

The Detect Motifs dialog will open to allow you to configure the search (Figure 1).

Figure 1. Configuring search parameters for de novo motfis

  • Select 1/p-value_filtered from the Spreadsheet with genomic regions drop-down menu

  • Set Number of Motifs to 1

  • Set Discover motifs of length to 6 bp to 16 bp

  • Set Result file to Motifs

  • Select OK

If you have not previously downloaded the reference genome on your computer, you may be asked if you would like to download the .2bit reference genome. If prompted, select Automatically download a .2bit file then select OK. If Partek Genomics Suite cannot connect to the internet, this option may not be available. If not, you will need to download the .2bit file from the UCSC Genome Browser and import it by selecting Manually specify a .2bit file and choosing the downloaded .2bit file. The reference genome map is required to determine which genes overlap the enriched peak regions and to display the aligned sequences in the Genome Viewer.

A motif visualization tab, Sequence Logo, will open and two spreadsheets will be generated. One spreadsheet, motifs (Motifs), contains information about the motif. The other, instances (Motifs_instances.txt), lists the genomic locations of the motif.

Description of Motif Detection Output

Sequence Logo Window

The Sequence Logo tab (Figure 2) opens after motif detection and displays the most significant motif found in the regions listed in the source spreadsheet_._

Figure 2. Viewing the binding site for NRSF. Use the blue arrows to cycle through views of all motif found (if there are more than one). Select Reverse to view the reverse complement sequence.

In this case, the motif finder discovered a motif in the NRSF-enriched regions that is 16 base pairs in length. The height of each position is the relative entropy (in bits) and indicates the importance of a base at a particular location in the binding site.

To view the reverse complement of the motif, select Reverse.

Motifs spreadsheet

The motif information spreadsheet (Figure 3), Motifs, lists the information about all motifs discovered during de novo Motif Detection. This includes five columns describing each motif.

Figure 3. Viewing the Motifs spreadsheet

1. Counts gives the summed counts for each base call across all occurrences of the motif in the region list as {A, C, G, T}

2. Consensus Sequence gives the consensus sequence of the motif in IUPAC nucleotide codes

3. Motif ID gives a unique ID to each discovered motif using its row in the Motifs spreadsheet

4. Log Likelihood Ratio scores the relative likelihood that the pattern did not occur by chance, with larger numbers indicating that it is less likely to have occurred by chance

5. Background frequency (A,C,G,T) gives the frequency of each of the bases in all the sequences of that motif

You can bring up the Sequence Logo visualization of a listed motif by right-clicking on the row header and selecting Logo View from the pop-up menu.

Motif_instances spreadsheet

The _instances (_Motif_instances) spreadsheet (Figure 4) is a child spreadsheet of the Motifs spreadsheet. It details all the locations of the motif(s) detected in the enriched regions. Each row lists a putative binding site for a motif. The columns give detailed information about the putative binding sites.

Figure 4. Viewing the instances spreadsheet

1-4. chromosome, start, stop, strand give the position

5. Motif ID gives the identity of the motif

6. instance gives the sequence of this instance of the motif

7. score gives the log ratio of the probability that this sequence was generated by the motif versus the background distribution. A higher number indicates a better chance that the sequence is an instance of the motif.

Search JASPAR for known motifs

  • Select Motif discovery from the Peak Analysis section of the ChIP-Seq workflow

  • Select Search for known motifs

  • Select OK

Search for known motifs will search the JASPAR database for motifs that are over-represented in the list of sequences in the significant regions list. The JASPAR database will download automatically if needed during the Search for known motifs step. Downloading the JASPAR database will create a spreadsheet in your experiment named JASPAR.txt that contains all of the species-specific motifs in the database. To visualize the motifs, right-click on a row in the JASPAR.txt spreadsheet and select Logo View.

Before Search for known motifs runs, we need to configure the search (Figure 5).

Figure 5. Configuring a search for known motifs in the JASPAR database

  • Select 1/p-value_filtered (p-value filtered.txt) from the Choose Region Spreadsheet drop-down menu

  • Select Search using motifs specified in: for Choose Motifs to Search

  • Set Search using motifs specified in: to 2 (JASPAR.txt) using the drop-down menu

  • Set Search for to All Motifs using the drop-down menu

  • Set Sequence Quality >= to 0.7

  • Name the result file MotifSearch

  • Select OK

Because we are searching for around 1200 motifs, the process will take some time to complete. Progress is displayed in the progress bar in the lower left-hand side of the Search for Motif(s) in Sequences dialog (Figure 6).

Figure 6. Progress in the motif search will display in the progress bar

Two spreadsheets are created, similar to the spreadsheets in the de novo motif discovery, the motif_summary (MotifSearch) spreadsheet (Figure 7) and the motif_instances (MotifSearch.instance) spreadsheet.

Figure 7. Viewing the results of motif search

In the MotifSearch spreadsheet, each motif used in the motif search is shown. The columns detail the results of the search for each motif that was found in the reads.

1. Motif this is the name or ID of the motif

2. Probability of Occurrence gives the probability of detecting a false positive for this motif in a random DNA sequence

3. Expected Number of Outcomes gives the Probability of Occurrence multiple by the summed length of the reads

4. Actual Number of Occurrences gives a count of sequences that match the known motif in the reads

5. p-value is the uncorrected p-value (binomial test)

As you can see, REST, which is another name for NRSF, is near the top of the list as one of the most significantly over-represented motifs (Figure 7). This motif agrees with the motif found in the de novo motif detection step. Interestingly, other motifs appear a significant number of times in the ChIP-Seq peaks and may represent possible co-factors or regulators.

The motif_instances spreadsheet contains all instances of the motifs from the motif_summary spreadsheet in a format identical to the instances spreadsheet from de novo motif detection.

Generating a list of regions containing a motif

While the motif_instances spreadsheet contains every instance of every motif, it may be useful to create a spreadsheet with just instances of one motif or a select group of motifs. Let's do this for both REST motifs.

  • Select the motif_instances spreadsheet in the spreadsheet tree

  • Right-click the 5. Motif Name column

  • Select Find / Replace / Select... from the pop-up menu (Figure 8)

Figure 8. Finding all REST peaks (step 1)

  • Set Find What: to REST

  • Select By Columns for Search:

  • Select Only in column with 5. Motif Name selected form the drop-down menu

  • Select Select All (Figure 9)

Figure 9. Selecting all REST instances in motif_instances spreadsheet (step 2)

This finds and selects every instance of REST in column 5. Motif Name.

  • Select Close

In the motif_instances spreadsheet the selected columns are highlighted.

  • Right-click on the first highlighted row visible; in this example, we see row 13196

  • Select Filter Include from the pop-up menu (Figure 10)

Figure 10. Filtering for selected rows

The spreadsheet will now include 2098 rows and a black and yellow bar will appear on the right-hand side of the spreadsheet (Figure 11). The black and yellow bar is a filter indicator showing the fraction of the spreadsheet currently visible as yellow and the filtered fraction as black.

Figure 11. Filtered motif_instances spreadsheet containing 2098 instances of the REST motifs

To create a spreadsheet that contains only the REST instances, we can clone the motif_instances spreadsheet while the filter is applied.

  • Right-click on motif_instances in the spreadsheet navigator

  • Select Clone... from the pop-up menu

  • Set the Name of resulting copy as REST

  • Select 1/p-value_filtered/motif_summary (MotifSearch) from the Create as a child of spreadsheet drop-down menu

  • Select OK

This creates a temporary spreadsheet rest from the filtered motif_instances spreadsheet. We can now save the new spreadsheet.

  • Select rest from the spreadsheet tree

  • Name the file REST

  • Select Save

We can now remove the filter from the source motif_instances spreadsheet.

  • Select motif_instances from the spreadsheet tree

  • Right-click the filter bar

  • Select Clear Filter

References

Neuwald, A. F., Liu, J.S., & Lawrence, C.E. (1995). Gibbs motif sampling: detection of outer membrane repeats (Vol. 4). Protein Science.

Additional Assistance

The title CT.TCC..GGT.CTG. is the consensus sequence for the sequence logo. Dots represent positions that contain more than one significant base across all reads in the motif. The dots can be replaced with characters representing the possible bases at each location by selecting Show nucleotide codes. A description of the IUPAC nucleotide codes is available at the .

Select () from the command bar

If you need additional assistance, please visit to submit a help ticket or find phone numbers for regional support.

UCSC Genome Browser
our support page
JASPAR