LogoLogo
Illumina KnowledgeIllumina SupportSign In
Partek
  • Home
Partek
  • Overview
  • Partek Flow
    • Frequently Asked Questions
      • General
      • Visualization
      • Statistics
      • Biological Interpretation
      • How to cite Partek software
    • Quick Start Guide
    • Installation Guide
      • Minimum System Requirements
      • Single Cell Toolkit System Requirements
      • Single Node Installation
      • Single Node Amazon Web Services Deployment
      • Multi-Node Cluster Installation
      • Creating Restricted User Folders within the Partek Flow server
      • Updating Partek Flow
      • Uninstalling Partek Flow
      • Dependencies
      • Docker and Docker-compose
      • Java KeyStore and Certificates
      • Kubernetes
    • Live Training Event Recordings
      • Bulk RNA-Seq Analysis Training
      • Basic scRNA-Seq Analysis & Visualization Training
      • Advanced scRNA-Seq Data Analysis Training
      • Bulk RNA-Seq and ATAC-Seq Integration Training
      • Spatial Transcriptomics Data Analysis Training
      • scRNA and scATAC Data Integration Training
    • Tutorials
      • Creating and Analyzing a Project
        • Creating a New Project
        • The Metadata Tab
        • The Analyses Tab
        • The Log Tab
        • The Project Settings Tab
        • The Attachments Tab
        • Project Management
        • Importing a GEO / ENA project
      • Bulk RNA-Seq
        • Importing the tutorial data set
        • Adding sample attributes
        • Running pre-alignment QA/QC
        • Trimming bases and filtering reads
        • Aligning to a reference genome
        • Running post-alignment QA/QC
        • Quantifying to an annotation model
        • Filtering features
        • Normalizing counts
        • Exploring the data set with PCA
        • Performing differential expression analysis with DESeq2
        • Viewing DESeq2 results and creating a gene list
        • Viewing a dot plot for a gene
        • Visualizing gene expression in Chromosome view
        • Generating a hierarchical clustering heatmap
        • Performing biological interpretation
        • Saving and running a pipeline
      • Analyzing Single Cell RNA-Seq Data
      • Analyzing CITE-Seq Data
        • Importing Feature Barcoding Data
        • Data Processing
        • Dimensionality Reduction and Clustering
        • Classifying Cells
        • Differentially Expressed Proteins and Genes
      • 10x Genomics Visium Spatial Data Analysis
        • Start with pre-processed Space Ranger output files
        • Start with 10x Genomics Visium fastq files
        • Spatial data analysis steps
        • View tissue images
      • 10x Genomics Xenium Data Analysis
        • Import 10x Genomics Xenium Analyzer output
        • Process Xenium data
        • Perform Exploratory analysis
        • Make comparisons using Compute biomarkers and Biological interpretation
      • Single Cell RNA-Seq Analysis (Multiple Samples)
        • Getting started with the tutorial data set
        • Classify cells from multiple samples using t-SNE
        • Compare expression between cell types with multiple samples
      • Analyzing Single Cell ATAC-Seq data
      • Analyzing Illumina Infinium Methylation array data
      • NanoString CosMx Tutorial
        • Importing CosMx data
        • QA/QC, data processing, and dimension reduction
        • Cell typing
        • Classify subpopulations & differential expression analysis
    • User Manual
      • Interface
      • Importing Data
        • SFTP File Transfer Instructions
        • Import single cell data
        • Importing 10x Genomics Matrix Files
        • Importing and Demultiplexing Illumina BCL Files
        • Partek Flow Uploader for Ion Torrent
        • Importing 10x Genomics .bcl Files
        • Import a GEO / ENA project
      • Task Menu
        • Task actions
        • Data summary report
        • QA/QC
          • Pre-alignment QA/QC
          • ERCC Assessment
          • Post-alignment QA/QC
          • Coverage Report
          • Validate Variants
          • Feature distribution
          • Single-cell QA/QC
          • Cell barcode QA/QC
        • Pre-alignment tools
          • Trim bases
          • Trim adapters
          • Filter reads
          • Trim tags
        • Post-alignment tools
          • Filter alignments
          • Convert alignments to unaligned reads
          • Combine alignments
          • Deduplicate UMIs
          • Downscale alignments
        • Annotation/Metadata
          • Annotate cells
          • Annotation report
          • Publish cell attributes to project
          • Attribute report
          • Annotate Visium image
        • Pre-analysis tools
          • Generate group cell counts
          • Pool cells
          • Split matrix
          • Hashtag demultiplexing
          • Merge matrices
          • Descriptive statistics
          • Spot clean
        • Aligners
        • Quantification
          • Quantify to annotation model (Partek E/M)
          • Quantify to transcriptome (Cufflinks)
          • Quantify to reference (Partek E/M)
          • Quantify regions
          • HTSeq
          • Count feature barcodes
          • Salmon
        • Filtering
          • Filter features
          • Filter groups (samples or cells)
          • Filter barcodes
          • Split by attribute
          • Downsample Cells
        • Normalization and scaling
          • Impute low expression
          • Impute missing values
          • Normalization
          • Normalize to baseline
          • Normalize to housekeeping genes
          • Scran deconvolution
          • SCTransform
          • TF-IDF normalization
        • Batch removal
          • General linear model
          • Harmony
          • Seurat3 integration
        • Differential Analysis
          • GSA
          • ANOVA/LIMMA-trend/LIMMA-voom
          • Kruskal-Wallis
          • Detect alt-splicing (ANOVA)
          • DESeq2(R) vs DESeq2
          • Hurdle model
          • Compute biomarkers
          • Transcript Expression Analysis - Cuffdiff
          • Troubleshooting
        • Survival Analysis with Cox regression and Kaplan-Meier analysis - Partek Flow
        • Exploratory Analysis
          • Graph-based Clustering
          • K-means Clustering
          • Compare Clusters
          • PCA
          • t-SNE
          • UMAP
          • Hierarchical Clustering
          • AUCell
          • Find multimodal neighbors
          • SVD
          • CellPhoneDB
        • Trajectory Analysis
          • Trajectory Analysis (Monocle 2)
          • Trajectory Analysis (Monocle 3)
        • Variant Callers
          • SAMtools
          • FreeBayes
          • LoFreq
        • Variant Analysis
          • Fusion Gene Detection
          • Annotate Variants
          • Annotate Variants (SnpEff)
          • Annotate Variants (VEP)
          • Filter Variants
          • Summarize Cohort Mutations
          • Combine Variants
        • Copy Number Analysis (CNVkit)
        • Peak Callers (MACS2)
        • Peak analysis
          • Annotate Peaks
          • Filter peaks
          • Promoter sum matrix
        • Motif Detection
        • Metagenomics
          • Kraken
          • Alpha & beta diversity
          • Choose taxonomic level
        • 10x Genomics
          • Cell Ranger - Gene Expression
          • Cell Ranger - ATAC
          • Space Ranger
          • STARsolo
        • V(D)J Analysis
        • Biological Interpretation
          • Gene Set Enrichment
          • GSEA
        • Correlation
          • Correlation analysis
          • Sample Correlation
          • Similarity matrix
        • Export
        • Classification
        • Feature linkage analysis
      • Data Viewer
      • Visualizations
        • Chromosome View
          • Launching the Chromosome View
          • Navigating Through the View
          • Selecting Data Tracks for Visualization
          • Visualizing the Results Using Data Tracks
          • Annotating the Results
          • Customizing the View
        • Dot Plot
        • Volcano Plot
        • List Generator (Venn Diagram)
        • Sankey Plot
        • Transcription Start Site (TSS) Plot
        • Sources of variation plot
        • Interaction Plots
        • Correlation Plot
        • Pie Chart
        • Histograms
        • Heatmaps
        • PCA, UMAP and tSNE scatter plots
        • Stacked Violin Plot
      • Pipelines
        • Making a Pipeline
        • Running a Pipeline
        • Downloading and Sharing a Pipeline
        • Previewing a Pipeline
        • Deleting a Pipeline
        • Importing a Pipeline
      • Large File Viewer
      • Settings
        • Personal
          • My Profile
          • My Preferences
          • Forgot Password
        • System
          • System Information
          • System Preferences
          • LDAP Configuration
        • Components
          • Filter Management
          • Library File Management
            • Library File Management Settings
            • Library File Management Page
            • Selecting an Assembly
            • Library Files
            • Update Library Index
            • Creating an Assembly on the Library File Management Page
            • Adding Library Files on the Library File Management Page
            • Adding a Reference Sequence
            • Adding a Cytoband
            • Adding Reference Aligner Indexes
            • Adding a Gene Set
            • Adding a Variant Annotation Database
            • Adding a SnpEff Variant Database
            • Adding a Variant Effect Predictor (VEP) Database
            • Adding an Annotation Model
            • Adding Aligner Indexes Based on an Annotation Model
            • Adding Library Files from Within a Project
            • Microarray Library Files
            • Adding Prep kit
            • Removing Library Files
          • Option Set Management
          • Task Management
          • Pipeline managment
          • Lists
        • Access
          • User Management
          • Group Management
          • Licensing
          • Directory Permissions
          • Access Control Log
          • Failed Logins
          • Orphaned files
        • Usage
          • System Queue
          • System Resources
          • Usage Report
      • Server Management
        • Backing Up the Database
        • System Administrator Guide (Linux)
        • Diagnosing Issues
        • Moving Data
        • Partek Flow Worker Allocator
      • Enterprise Features and Toolkits
        • REST API
          • REST API Command List
      • Microarray Toolkit
        • Importing Custom Microarrays
      • Glossary
    • Webinars
    • Blog Posts
      • How to select the best single cell quality control thresholds
      • Cellular Differentiation Using Trajectory Analysis & Single Cell RNA-Seq Data
      • Spatial transcriptomics—what’s the big deal and why you should do it
      • Detecting differential gene expression in single cell RNA-Seq analysis
      • Batch remover for single cell data
      • How to perform single cell RNA sequencing: exploratory analysis
      • Single Cell Multiomics Analysis: Strategies for Integration
      • Pathway Analysis: ANOVA vs. Enrichment Analysis
      • Studying Immunotherapy with Multiomics: Simultaneous Measurement of Gene and Protein
      • How to Integrate ChIP-Seq and RNA-Seq Data
      • Enjoy Responsibly!
      • To Boldly Go…
      • Get to Know Your Cell
      • Aliens Among Us: How I Analyzed Non-Model Organism Data in Partek Flow
    • White Papers
      • Understanding Reads in RNA-Seq Analysis
      • RNA-Seq Quantification
      • Gene-specific Analysis
      • Gene Set ANOVA
      • Partek Flow Security
      • Single Cell Scaling
      • UMI Deduplication in Partek Flow
      • Mapping error statistics
    • Release Notes
      • Release Notes Archive - Partek Flow 10
  • Partek Genomics Suite
    • Installation Guide
      • Minimum System Requirements
      • Computer Host ID Retrieval
      • Node Locked Installation
        • Windows Installation
        • Macintosh Installation
      • Floating/Locked Floating Installation
        • Linux Installation
          • FlexNet Installation on Linux
        • Installing FlexNet on Windows
        • License Server FAQ's
        • Client Computer Connection to License Server
      • Uninstalling Partek Genomics Suite
      • Updating to Version 7.0
      • License Types
      • Installation FAQs
    • User Manual
      • Lists
        • Importing a text file list
        • Adding annotations to a gene list
        • Tasks available for a gene list
        • Starting with a list of genomic regions
        • Starting with a list of SNPs
        • Importing a BED file
        • Additional options for lists
      • Annotation
      • Hierarchical Clustering Analysis
      • Gene Ontology ANOVA
        • Implementation Details
        • Configuring the GO ANOVA Dialog
        • Performing GO ANOVA
        • GO ANOVA Output
        • GO ANOVA Visualisations
        • Recommended Filters
      • Visualizations
        • Dot Plot
        • Profile Plot
        • XY Plot / Bar Chart
        • Volcano Plot
        • Scatter Plot and MA Plot
        • Sort Rows by Prototype
        • Manhattan Plot
        • Violin Plot
      • Visualizing NGS Data
      • Chromosome View
      • Methylation Workflows
      • Trio/Duo Analysis
      • Association Analysis
      • LOH detection with an allele ratio spreadsheet
      • Import data from Agilent feature extraction software
      • Illumina GenomeStudio Plugin
        • Import gene expression data
        • Import Genotype Data
        • Export CNV data to Illumina GenomeStudio using Partek report plug-in
        • Import data from Illumina GenomeStudio using Partek plug-in
        • Export methylation data to Illumina GenomeStudio using Partek report plug-in
    • Tutorials
      • Gene Expression Analysis
        • Importing Affymetrix CEL files
        • Adding sample information
        • Exploring gene expression data
        • Identifying differentially expressed genes using ANOVA
        • Creating gene lists from ANOVA results
        • Performing hierarchical clustering
        • Adding gene annotations
      • Gene Expression Analysis with Batch Effects
        • Importing the data set
        • Adding an annotation link
        • Exploring the data set with PCA
        • Detect differentially expressed genes with ANOVA
        • Removing batch effects
        • Creating a gene list using the Venn Diagram
        • Hierarchical clustering using a gene list
        • GO enrichment using a gene list
      • Differential Methylation Analysis
        • Import and normalize methylation data
        • Annotate samples
        • Perform data quality analysis and quality control
        • Detect differentially methylated loci
        • Create a marker list
        • Filter loci with the interactive filter
        • Obtain methylation signatures
        • Visualize methylation at each locus
        • Perform gene set and pathway analysis
        • Detect differentially methylated CpG islands
        • Optional: Add UCSC CpG island annotations
        • Optional: Use MethylationEPIC for CNV analysis
        • Optional: Import a Partek Project from Genome Studio
      • Partek Pathway
        • Performing pathway enrichment
        • Analyzing pathway enrichment in Partek Genomics Suite
        • Analyzing pathway enrichment in Partek Pathway
      • Gene Ontology Enrichment
        • Open a zipped project
        • Perform GO enrichment analysis
      • RNA-Seq Analysis
        • Importing aligned reads
        • Adding sample attributes
        • RNA-Seq mRNA quantification
        • Detecting differential expression in RNA-Seq data
        • Creating a gene list with advanced options
        • Visualizing mapped reads with Chromosome View
        • Visualizing differential isoform expression
        • Gene Ontology (GO) Enrichment
        • Analyzing the unexplained regions spreadsheet
      • ChIP-Seq Analysis
        • Importing ChIP-Seq data
        • Quality control for ChIP-Seq samples
        • Detecting peaks and enriched regions in ChIP-Seq data
        • Creating a list of enriched regions
        • Identifying novel and known motifs
        • Finding nearest genomic features
        • Visualizing reads and enriched regions
      • Survival Analysis
        • Kaplan-Meier Survival Analysis
        • Cox Regression Analysis
      • Model Selection Tool
      • Copy Number Analysis
        • Importing Copy Number Data
        • Exploring the data with PCA
        • Creating Copy Number from Allele Intensities
        • Detecting regions with copy number variation
        • Creating a list of regions
        • Finding genes with copy number variation
        • Optional: Additional options for annotating regions
        • Optional: GC wave correction for Affymetrix CEL files
        • Optional: Integrating copy number with LOH and AsCN
      • Loss of Heterozygosity
      • Allele Specific Copy Number
      • Gene Expression - Aging Study
      • miRNA Expression and Integration with Gene Expression
        • Analyze differentially expressed miRNAs
        • Integrate miRNA and Gene Expression data
      • Promoter Tiling Array
      • Human Exon Array
        • Importing Human Exon Array
        • Gene-level Analysis of Exon Array
        • Alt-Splicing Analysis of Exon Array
      • NCBI GEO Importer
    • Webinars
    • White Papers
      • Allele Intensity Import
      • Allele-Specific Copy Number
      • Calculating Genotype Likelihoods
      • ChIP-Seq Peak Detection
      • Detect Regions of Significance
      • Genomic Segmentation
      • Loss of Heterozygosity Analysis
      • Motif Discovery Methods
      • Partek Genomics Suite Security
      • Reads in RNA-Seq
      • RNA-Seq Methods
      • Unpaired Copy Number Estimation
    • Release Notes
    • Version Updates
    • TeamViewer Instructions
  • Getting Help
    • TeamViewer Instructions
Powered by GitBook
On this page
  • What is Cell Ranger?
  • Cell Ranger - ATAC in Partek Flow
  • Importing Cell Ranger - ATAC data in a Partek Flow project
  • Running Cell Ranger - ATAC in Flow
  • Cell Ranger - ATAC task report in Flow
  • Import Cell Ranger output into Flow
  • Import FASTQs for Cell Ranger - ATAC in Flow
  • References
  • Additional Assistance

Was this helpful?

Export as PDF
  1. Partek Flow
  2. User Manual
  3. Task Menu
  4. 10x Genomics

Cell Ranger - ATAC

PreviousCell Ranger - Gene ExpressionNextSpace Ranger

Last updated 6 months ago

Was this helpful?


What is Cell Ranger?

Cell Ranger is a set of analysis pipelines that process Chromium single cell data to align reads, generate feature-barcode matrices, and perform clustering and gene expression analysis for 10X Genomics Chromium Technology[1].

Cell Ranger - ATAC in Partek Flow

Cell Ranger - ATAC task in Partek Flow includes two different wrappers. To deal with the single cell ATAC-Seq dataset, the 'cellranger-atac count' pipeline from Cell Ranger ATAC v2.0[2] has been wrapped in Flow. It takes FASTQ files from 'cellranger-atac mkfastq' and performs ATAC analysis including reads filtering and alignment, barcode counting, identification of transposase cut sites, peak and cell calling, and count matrix generation. Its outputs then become the starting point for downstream analysis for scATAC-Seq data. To process Chromium Single Cell Multiome ATAC + Gene Expression sequencing data, ‘cellranger-arc count’ v2.0[3] has been wrapped to generate a variety of analyses pertaining to gene expression, chromatin accessibility and their linkage.

Importing Cell Ranger - ATAC data in a Partek Flow project

When importing raw reads for processing using the Cell Ranger - ATAC task for scATAC-Seq data, the user is not required to specify the data type. If you are importing 10x multiome ATAC + Gene Expression data, first select the ATAC files choose data type ATAC-Seq and complete the import. Once the import task has successfully run, add the gene expression reads to each of the samples. Remember to specify mRNA in the data type during import.

Running Cell Ranger - ATAC in Flow

To run the Cell Ranger - ATAC task for scATAC-Seq data, select the Unaligned reads data node, then select Cell Ranger - ATAC in the 10x Genomics section (top panel, Figure 1). For 10x multiome ATAC + Gene Expression data, there will be two data nodes once the FASTQ files have been imported into Flow properly - ATAC-Seq and mRNA (bottom panel, Figure 1). Users should select the ATAC-Seq datanode to trigger the Cell ranger - ATAC task.

Once the right assembly has been chosen/provided, simply press the Finish button to run the task with default settings. The reference assembly of ‘Homo sapiens (human) - hg38’ has been used as an example here (Figure 2).

The interface will be different for Single Cell Multiome ATAC + Gene Expression sequencing data because the gene expression data from the very same cell has to be paired with the ATAC-Seq data (Figure 3)

After the task has finished successfully, a new data node named Single cell counts will be displayed (Figure 4). This data node contains a filtered peak barcode count matrix for ATAC-Seq data, but a unified feature-barcode matrix that contains gene expression counts alongside ATAC-Seq peak counts for each cell barcode for multiomic data. To open the task report when the task is finished, double click the output data node, or select the Task report in the Task results section after single clicking the data node. The task report (Figure 5) is the same as the ‘Summary HTML’ from Cell Ranger ATAC output.

Cell Ranger - ATAC task report in Flow

The Library Complexity section in Data Quality report plots the observed per cell complexity, measured as median unique fragments per cell, as a function of mean reads per cell (Figure 6). While the Mapping section displays the Insert Size Distribution plot, and metrics derived from it. Single Cell ATAC read pairs produce detailed information about nucleosome packing and positioning. The fragment length distribution captures the nucleosome positioning periodicity. The Targeting section shows profiling of the chromatin accessibility behavior of the library at epigenetically relevant regions in the genome. The Enrichment around TSS plot is helpful to assess the signal-to-noise ratio of the library. It is well known that Transcriptional Start Sites (TSSs) and the promoter regions around them have a higher degree of chromatin accessibility compared to other regions of the genome. The Peaks targeting plot presents the variation in the number of on-target fragments, or fragments that overlap peaks, within each barcode group. A higher percentage of the barcode fragments overlap peaks is expected for cell-associated barcodes.

The task report for multiomic data analysis is more complicated. It contains summary metrics at different levels - ATAC, gene expression, both/joint. Joint view is the default view visible upon first rendering the summary and can be accessed by clicking "Joint" at the top left corner. Metrics that are specific to the given Chromatin Accessibility library will appear in the ATAC tab. Lastly, metrics that are specific to the given gene expression library will appear in the Gene Expression tab (Figure 7). To understand the details, please refer to 10x Genomics webpage[4].

Other adjustable parameters in this task (Figure 2) include:

Subsample percentile: Downsample to preserve this fraction of reads.

Users can also click Configure to change the default settings in Advanced options (Figure 2).

Override peak caller: To override the peak caller, users specify peaks to use in downstream analyses from supplied 3-column BED file. The supplied peaks file must be sorted by position and not contain overlapping peaks; comment lines beginning with `#` are allowed.

Force cells: Define the top N barcodes with the most fragments overlapping peaks as cells and override the cell calling algorithm. N must be a positive integer <= 20,000. Use this option if the number of cells estimated by Cell Ranger -ATAC is not consistent with the barcode rank plot.

Memory limit (GB): Restricts Cell Ranger - ATAC to use specified amount of memory (in GB) to execute pipeline stages.

Import Cell Ranger output into Flow

If users have converted FASTQ outside of Partek, the available count matrix can be imported along with additional files (Figure 8A). Files that Flow will need to complete the import includes the following:

filtered_feature_bc_matrix.h5

per_barcode_metrics.csv (or the name is singlecell.csv)

peaks.bed

fragments.tsv.gz.tbi

fragments.tsv.gz.

Those five files can usually be found in the outs/ subdirectory within the pipeline output directory (Figure 8B). Five files are necessary per sample because scATAC-seq is more complicated than RNA-seq. If peak calling was performed on each sample/dataset independently, the peaks are unlikely to be exactly the same so all of the samples/datasets need to be merged to create a common set of peaks across the samples/datasets; this is performed during data import wherein all of the samples/datasets need to be imported at one time, not separately. To add samples, click the green + button (Figure8A).

Import FASTQs for Cell Ranger - ATAC in Flow

Although the index files (I1 or I2) are optional, we encourage users to include all of the FASTQs in the table (Figure 9) while importing data for Cell Ranger - ATAC.

References

Additional Assistance

Similar to the Cell Ranger - Gene Expression task, a first time user will be asked to create a Reference assembly. In Partek Flow, we will use Cell Ranger ARC 2.0.0 to create a Reference assembly for all 10x Genomics analysis pipelines. Please refer to our task manual on how to build or use Reference assembly.

The task report is sample based. Users can use the dropdown list on the top left to switch samples. Under the sample name, there are two tabs on each report - Summary report and Data Quality report (Figure 5). Important information on the Estimated Number of Cells, Median high-quality fragments per cell, Fraction of high-quality fragments overlapping peaks, as well as information on Sample, Sequencing, Cells and Cell Clustering are summarized in different panels. Importantly, the Barcode Rank plot and the Fragment Distribution plot have also been included in the Cells section of the Summary report (Figure 5). Descriptions of metrics in the following sections can also be found by clicking the to the section header in the Summary HTML file itself.

The import of ATAC FASTQ files are as straightforward as the (sc)RNA-Seq data. However, we need to associate the two different types of data together for 10x multiome ATAC + Gene Expression data. This includes two steps: 1). Import the ATAC FASTQ files in the new page after clicking on the "Automatically create samples from files" in Data tab (Figure 10A) and select the data type, as ATAC-Seq, from the dropdown list (Figure 10B). 2). Move back to the Data tab and display all of the files by clicking on the Show data files button at the bottom left of Sample name table. Then click the green + button (Figure 10C) to add RNA FASTQs to the same sample. Similarly, we will select the data type from the dropdown (mRNA) before we finish the import process by clicking on the Associate file button (Figure 10D).

If you need additional assistance, please visit to submit a help ticket or find phone numbers for regional support.

Cell Ranger - Gene Expression
https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/release-notes
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/what-is-cell-ranger-arc
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/output/summary
our support page
What is Cell Ranger?
Cell Ranger - ATAC in Partek Flow
Importing Cell Ranger - ATAC data in a Partek Flow project
Running Cell Ranger - ATAC in Flow
Cell Ranger - ATAC task report in Flow
Import Cell Ranger output into Flow
Import FASTQs for Cell Ranger - ATAC in Flow
References
Figure 1. Selecting the Cell Ranger - ATAC task for converting fastqs to Single cell counts.
Figure 2. Run Cell Ranger - ATAC task in Flow.
Figure 3. Run Cell Ranger - ATAC task for 10x Single Cell Multiome ATAC and Gene Expression data in Flow.
Figure 4. The finished Cell Ranger - ATAC task in Flow.
Figure 5. The example report of Cell Ranger - ATAC task in Flow.
Figure 6. Data Quality report of Cell Ranger - ATAC task in Flow.
Figure 7. Report for 10x Chromium Single Cell Multiome ATAC + Gene Expression data in Flow Cell Ranger - ATAC task.
Figure 8. Single cell ATAC count matrix import in Flow.
Figure 9. Input FASTQs for Cell Ranger - ATAC in Flow.
Figure 10. Import FASTQs for 10x multiomics ATAC + GEX data in Flow.