LogoLogo
Illumina KnowledgeIllumina SupportSign In
Partek
  • Home
Partek
  • Overview
  • Partek Flow
    • Frequently Asked Questions
      • General
      • Visualization
      • Statistics
      • Biological Interpretation
      • How to cite Partek software
    • Quick Start Guide
    • Installation Guide
      • Minimum System Requirements
      • Single Cell Toolkit System Requirements
      • Single Node Installation
      • Single Node Amazon Web Services Deployment
      • Multi-Node Cluster Installation
      • Creating Restricted User Folders within the Partek Flow server
      • Updating Partek Flow
      • Uninstalling Partek Flow
      • Dependencies
      • Docker and Docker-compose
      • Java KeyStore and Certificates
      • Kubernetes
    • Live Training Event Recordings
      • Bulk RNA-Seq Analysis Training
      • Basic scRNA-Seq Analysis & Visualization Training
      • Advanced scRNA-Seq Data Analysis Training
      • Bulk RNA-Seq and ATAC-Seq Integration Training
      • Spatial Transcriptomics Data Analysis Training
      • scRNA and scATAC Data Integration Training
    • Tutorials
      • Creating and Analyzing a Project
        • Creating a New Project
        • The Metadata Tab
        • The Analyses Tab
        • The Log Tab
        • The Project Settings Tab
        • The Attachments Tab
        • Project Management
        • Importing a GEO / ENA project
      • Bulk RNA-Seq
        • Importing the tutorial data set
        • Adding sample attributes
        • Running pre-alignment QA/QC
        • Trimming bases and filtering reads
        • Aligning to a reference genome
        • Running post-alignment QA/QC
        • Quantifying to an annotation model
        • Filtering features
        • Normalizing counts
        • Exploring the data set with PCA
        • Performing differential expression analysis with DESeq2
        • Viewing DESeq2 results and creating a gene list
        • Viewing a dot plot for a gene
        • Visualizing gene expression in Chromosome view
        • Generating a hierarchical clustering heatmap
        • Performing biological interpretation
        • Saving and running a pipeline
      • Analyzing Single Cell RNA-Seq Data
      • Analyzing CITE-Seq Data
        • Importing Feature Barcoding Data
        • Data Processing
        • Dimensionality Reduction and Clustering
        • Classifying Cells
        • Differentially Expressed Proteins and Genes
      • 10x Genomics Visium Spatial Data Analysis
        • Start with pre-processed Space Ranger output files
        • Start with 10x Genomics Visium fastq files
        • Spatial data analysis steps
        • View tissue images
      • 10x Genomics Xenium Data Analysis
        • Import 10x Genomics Xenium Analyzer output
        • Process Xenium data
        • Perform Exploratory analysis
        • Make comparisons using Compute biomarkers and Biological interpretation
      • Single Cell RNA-Seq Analysis (Multiple Samples)
        • Getting started with the tutorial data set
        • Classify cells from multiple samples using t-SNE
        • Compare expression between cell types with multiple samples
      • Analyzing Single Cell ATAC-Seq data
      • Analyzing Illumina Infinium Methylation array data
      • NanoString CosMx Tutorial
        • Importing CosMx data
        • QA/QC, data processing, and dimension reduction
        • Cell typing
        • Classify subpopulations & differential expression analysis
    • User Manual
      • Interface
      • Importing Data
        • SFTP File Transfer Instructions
        • Import single cell data
        • Importing 10x Genomics Matrix Files
        • Importing and Demultiplexing Illumina BCL Files
        • Partek Flow Uploader for Ion Torrent
        • Importing 10x Genomics .bcl Files
        • Import a GEO / ENA project
      • Task Menu
        • Task actions
        • Data summary report
        • QA/QC
          • Pre-alignment QA/QC
          • ERCC Assessment
          • Post-alignment QA/QC
          • Coverage Report
          • Validate Variants
          • Feature distribution
          • Single-cell QA/QC
          • Cell barcode QA/QC
        • Pre-alignment tools
          • Trim bases
          • Trim adapters
          • Filter reads
          • Trim tags
        • Post-alignment tools
          • Filter alignments
          • Convert alignments to unaligned reads
          • Combine alignments
          • Deduplicate UMIs
          • Downscale alignments
        • Annotation/Metadata
          • Annotate cells
          • Annotation report
          • Publish cell attributes to project
          • Attribute report
          • Annotate Visium image
        • Pre-analysis tools
          • Generate group cell counts
          • Pool cells
          • Split matrix
          • Hashtag demultiplexing
          • Merge matrices
          • Descriptive statistics
          • Spot clean
        • Aligners
        • Quantification
          • Quantify to annotation model (Partek E/M)
          • Quantify to transcriptome (Cufflinks)
          • Quantify to reference (Partek E/M)
          • Quantify regions
          • HTSeq
          • Count feature barcodes
          • Salmon
        • Filtering
          • Filter features
          • Filter groups (samples or cells)
          • Filter barcodes
          • Split by attribute
          • Downsample Cells
        • Normalization and scaling
          • Impute low expression
          • Impute missing values
          • Normalization
          • Normalize to baseline
          • Normalize to housekeeping genes
          • Scran deconvolution
          • SCTransform
          • TF-IDF normalization
        • Batch removal
          • General linear model
          • Harmony
          • Seurat3 integration
        • Differential Analysis
          • GSA
          • ANOVA/LIMMA-trend/LIMMA-voom
          • Kruskal-Wallis
          • Detect alt-splicing (ANOVA)
          • DESeq2(R) vs DESeq2
          • Hurdle model
          • Compute biomarkers
          • Transcript Expression Analysis - Cuffdiff
          • Troubleshooting
        • Survival Analysis with Cox regression and Kaplan-Meier analysis - Partek Flow
        • Exploratory Analysis
          • Graph-based Clustering
          • K-means Clustering
          • Compare Clusters
          • PCA
          • t-SNE
          • UMAP
          • Hierarchical Clustering
          • AUCell
          • Find multimodal neighbors
          • SVD
          • CellPhoneDB
        • Trajectory Analysis
          • Trajectory Analysis (Monocle 2)
          • Trajectory Analysis (Monocle 3)
        • Variant Callers
          • SAMtools
          • FreeBayes
          • LoFreq
        • Variant Analysis
          • Fusion Gene Detection
          • Annotate Variants
          • Annotate Variants (SnpEff)
          • Annotate Variants (VEP)
          • Filter Variants
          • Summarize Cohort Mutations
          • Combine Variants
        • Copy Number Analysis (CNVkit)
        • Peak Callers (MACS2)
        • Peak analysis
          • Annotate Peaks
          • Filter peaks
          • Promoter sum matrix
        • Motif Detection
        • Metagenomics
          • Kraken
          • Alpha & beta diversity
          • Choose taxonomic level
        • 10x Genomics
          • Cell Ranger - Gene Expression
          • Cell Ranger - ATAC
          • Space Ranger
          • STARsolo
        • V(D)J Analysis
        • Biological Interpretation
          • Gene Set Enrichment
          • GSEA
        • Correlation
          • Correlation analysis
          • Sample Correlation
          • Similarity matrix
        • Export
        • Classification
        • Feature linkage analysis
      • Data Viewer
      • Visualizations
        • Chromosome View
          • Launching the Chromosome View
          • Navigating Through the View
          • Selecting Data Tracks for Visualization
          • Visualizing the Results Using Data Tracks
          • Annotating the Results
          • Customizing the View
        • Dot Plot
        • Volcano Plot
        • List Generator (Venn Diagram)
        • Sankey Plot
        • Transcription Start Site (TSS) Plot
        • Sources of variation plot
        • Interaction Plots
        • Correlation Plot
        • Pie Chart
        • Histograms
        • Heatmaps
        • PCA, UMAP and tSNE scatter plots
        • Stacked Violin Plot
      • Pipelines
        • Making a Pipeline
        • Running a Pipeline
        • Downloading and Sharing a Pipeline
        • Previewing a Pipeline
        • Deleting a Pipeline
        • Importing a Pipeline
      • Large File Viewer
      • Settings
        • Personal
          • My Profile
          • My Preferences
          • Forgot Password
        • System
          • System Information
          • System Preferences
          • LDAP Configuration
        • Components
          • Filter Management
          • Library File Management
            • Library File Management Settings
            • Library File Management Page
            • Selecting an Assembly
            • Library Files
            • Update Library Index
            • Creating an Assembly on the Library File Management Page
            • Adding Library Files on the Library File Management Page
            • Adding a Reference Sequence
            • Adding a Cytoband
            • Adding Reference Aligner Indexes
            • Adding a Gene Set
            • Adding a Variant Annotation Database
            • Adding a SnpEff Variant Database
            • Adding a Variant Effect Predictor (VEP) Database
            • Adding an Annotation Model
            • Adding Aligner Indexes Based on an Annotation Model
            • Adding Library Files from Within a Project
            • Microarray Library Files
            • Adding Prep kit
            • Removing Library Files
          • Option Set Management
          • Task Management
          • Pipeline managment
          • Lists
        • Access
          • User Management
          • Group Management
          • Licensing
          • Directory Permissions
          • Access Control Log
          • Failed Logins
          • Orphaned files
        • Usage
          • System Queue
          • System Resources
          • Usage Report
      • Server Management
        • Backing Up the Database
        • System Administrator Guide (Linux)
        • Diagnosing Issues
        • Moving Data
        • Partek Flow Worker Allocator
      • Enterprise Features and Toolkits
        • REST API
          • REST API Command List
      • Microarray Toolkit
        • Importing Custom Microarrays
      • Glossary
    • Webinars
    • Blog Posts
      • How to select the best single cell quality control thresholds
      • Cellular Differentiation Using Trajectory Analysis & Single Cell RNA-Seq Data
      • Spatial transcriptomics—what’s the big deal and why you should do it
      • Detecting differential gene expression in single cell RNA-Seq analysis
      • Batch remover for single cell data
      • How to perform single cell RNA sequencing: exploratory analysis
      • Single Cell Multiomics Analysis: Strategies for Integration
      • Pathway Analysis: ANOVA vs. Enrichment Analysis
      • Studying Immunotherapy with Multiomics: Simultaneous Measurement of Gene and Protein
      • How to Integrate ChIP-Seq and RNA-Seq Data
      • Enjoy Responsibly!
      • To Boldly Go…
      • Get to Know Your Cell
      • Aliens Among Us: How I Analyzed Non-Model Organism Data in Partek Flow
    • White Papers
      • Understanding Reads in RNA-Seq Analysis
      • RNA-Seq Quantification
      • Gene-specific Analysis
      • Gene Set ANOVA
      • Partek Flow Security
      • Single Cell Scaling
      • UMI Deduplication in Partek Flow
      • Mapping error statistics
    • Release Notes
      • Release Notes Archive - Partek Flow 10
  • Partek Genomics Suite
    • Installation Guide
      • Minimum System Requirements
      • Computer Host ID Retrieval
      • Node Locked Installation
        • Windows Installation
        • Macintosh Installation
      • Floating/Locked Floating Installation
        • Linux Installation
          • FlexNet Installation on Linux
        • Installing FlexNet on Windows
        • License Server FAQ's
        • Client Computer Connection to License Server
      • Uninstalling Partek Genomics Suite
      • Updating to Version 7.0
      • License Types
      • Installation FAQs
    • User Manual
      • Lists
        • Importing a text file list
        • Adding annotations to a gene list
        • Tasks available for a gene list
        • Starting with a list of genomic regions
        • Starting with a list of SNPs
        • Importing a BED file
        • Additional options for lists
      • Annotation
      • Hierarchical Clustering Analysis
      • Gene Ontology ANOVA
        • Implementation Details
        • Configuring the GO ANOVA Dialog
        • Performing GO ANOVA
        • GO ANOVA Output
        • GO ANOVA Visualisations
        • Recommended Filters
      • Visualizations
        • Dot Plot
        • Profile Plot
        • XY Plot / Bar Chart
        • Volcano Plot
        • Scatter Plot and MA Plot
        • Sort Rows by Prototype
        • Manhattan Plot
        • Violin Plot
      • Visualizing NGS Data
      • Chromosome View
      • Methylation Workflows
      • Trio/Duo Analysis
      • Association Analysis
      • LOH detection with an allele ratio spreadsheet
      • Import data from Agilent feature extraction software
      • Illumina GenomeStudio Plugin
        • Import gene expression data
        • Import Genotype Data
        • Export CNV data to Illumina GenomeStudio using Partek report plug-in
        • Import data from Illumina GenomeStudio using Partek plug-in
        • Export methylation data to Illumina GenomeStudio using Partek report plug-in
    • Tutorials
      • Gene Expression Analysis
        • Importing Affymetrix CEL files
        • Adding sample information
        • Exploring gene expression data
        • Identifying differentially expressed genes using ANOVA
        • Creating gene lists from ANOVA results
        • Performing hierarchical clustering
        • Adding gene annotations
      • Gene Expression Analysis with Batch Effects
        • Importing the data set
        • Adding an annotation link
        • Exploring the data set with PCA
        • Detect differentially expressed genes with ANOVA
        • Removing batch effects
        • Creating a gene list using the Venn Diagram
        • Hierarchical clustering using a gene list
        • GO enrichment using a gene list
      • Differential Methylation Analysis
        • Import and normalize methylation data
        • Annotate samples
        • Perform data quality analysis and quality control
        • Detect differentially methylated loci
        • Create a marker list
        • Filter loci with the interactive filter
        • Obtain methylation signatures
        • Visualize methylation at each locus
        • Perform gene set and pathway analysis
        • Detect differentially methylated CpG islands
        • Optional: Add UCSC CpG island annotations
        • Optional: Use MethylationEPIC for CNV analysis
        • Optional: Import a Partek Project from Genome Studio
      • Partek Pathway
        • Performing pathway enrichment
        • Analyzing pathway enrichment in Partek Genomics Suite
        • Analyzing pathway enrichment in Partek Pathway
      • Gene Ontology Enrichment
        • Open a zipped project
        • Perform GO enrichment analysis
      • RNA-Seq Analysis
        • Importing aligned reads
        • Adding sample attributes
        • RNA-Seq mRNA quantification
        • Detecting differential expression in RNA-Seq data
        • Creating a gene list with advanced options
        • Visualizing mapped reads with Chromosome View
        • Visualizing differential isoform expression
        • Gene Ontology (GO) Enrichment
        • Analyzing the unexplained regions spreadsheet
      • ChIP-Seq Analysis
        • Importing ChIP-Seq data
        • Quality control for ChIP-Seq samples
        • Detecting peaks and enriched regions in ChIP-Seq data
        • Creating a list of enriched regions
        • Identifying novel and known motifs
        • Finding nearest genomic features
        • Visualizing reads and enriched regions
      • Survival Analysis
        • Kaplan-Meier Survival Analysis
        • Cox Regression Analysis
      • Model Selection Tool
      • Copy Number Analysis
        • Importing Copy Number Data
        • Exploring the data with PCA
        • Creating Copy Number from Allele Intensities
        • Detecting regions with copy number variation
        • Creating a list of regions
        • Finding genes with copy number variation
        • Optional: Additional options for annotating regions
        • Optional: GC wave correction for Affymetrix CEL files
        • Optional: Integrating copy number with LOH and AsCN
      • Loss of Heterozygosity
      • Allele Specific Copy Number
      • Gene Expression - Aging Study
      • miRNA Expression and Integration with Gene Expression
        • Analyze differentially expressed miRNAs
        • Integrate miRNA and Gene Expression data
      • Promoter Tiling Array
      • Human Exon Array
        • Importing Human Exon Array
        • Gene-level Analysis of Exon Array
        • Alt-Splicing Analysis of Exon Array
      • NCBI GEO Importer
    • Webinars
    • White Papers
      • Allele Intensity Import
      • Allele-Specific Copy Number
      • Calculating Genotype Likelihoods
      • ChIP-Seq Peak Detection
      • Detect Regions of Significance
      • Genomic Segmentation
      • Loss of Heterozygosity Analysis
      • Motif Discovery Methods
      • Partek Genomics Suite Security
      • Reads in RNA-Seq
      • RNA-Seq Methods
      • Unpaired Copy Number Estimation
    • Release Notes
    • Version Updates
    • TeamViewer Instructions
  • Getting Help
    • TeamViewer Instructions
Powered by GitBook
On this page
  • Filter Groups
  • Re-split the Matrix
  • Differential Analysis and Visualization - Protein Data
  • Differential Analysis, Visualization, and Pathway analysis - Gene Expression Data
  • Additional Assistance

Was this helpful?

Export as PDF
  1. Partek Flow
  2. Tutorials
  3. Analyzing CITE-Seq Data

Differentially Expressed Proteins and Genes

PreviousClassifying CellsNext10x Genomics Visium Spatial Data Analysis

Last updated 7 months ago

Was this helpful?

Next, we will filter out certain cells and re-split the data. Re-splitting the data can be useful if you want to perform differential analysis and downstream analysis separately for proteins and genes. For your own analyses, re-splitting the data is optional. You could just as well continue with differential analysis with the merged data if you prefer.

Filter Groups

Because we have classified our cells, we can now filter based on those classifications. This can be used to focus on a single cell type for re-clustering and sub-classification or to exclude cells that are not of interest for downstream analysis.

  • Click the Merged counts data node

  • Click Filtering

  • Click Filter cells

  • Set to exclude Cell type is Doublets using the drop-down menus

  • Click OR

  • Set the second filter to exclude Cell type is N/A using the drop-down menus

  • Click Finish to apply the filter (Figure 1)

This produces a Filtered counts data node (Figure 2).

Re-split the Matrix

  • Click the Filtered counts data node

  • Click Pre-analysis tools

  • Click Split by feature type

This will produce two data nodes, one for each data type (Figure 3). The split data nodes will both retain cell classification information.

Differential Analysis and Visualization - Protein Data

Once we have classified our cells, we can use this information to perform comparisons between cell types or between experimental groups for a cell type. In this project, we only have a single sample, so we will compare cell types.

  • Click the Antibody Capture data node

  • Click Statistics

  • Click Differential analysis

  • Click ANOVA then click Next

The first step is to choose which attributes we want to consider in the statistical test.

  • Click Cell type

  • Click Add factor

  • Click Next

Next, we will set up the comparison we want to make. Here, we will compare the Activated and Mature B cells.

  • Drag Activated B cells in the top panel

  • Drag Mature B cells in the bottom panel

  • Click Add comparison

The comparison should appear in the table as Activated B cells vs. Mature B cells.

  • Click Finish to run the statistical test (Figure 4)

The ANOVA task produces an ANOVA data node.

  • Double-click the ANOVA data node to open the task report

The report lists each feature tested, giving p-value, false discovery rate adjusted p-value (FDR step up), and fold change values for each comparison (Figure 5).

In addition to the listed information, we can access dot and violin plots for each gene or protein from this table.

This opens a dot plot in a new data viewer session, showing CD45A expression for cells in each of the classifications (Figure 6). First, we exclude Doublets and N/A cells from the plot:

  • Open Select and filter, select Criteria

  • Drag "Cell type" from the legend title to the Add criteria box

  • Uncheck Doublets and N/A

  • Click to include selected points

We can use the Configuration panel on the left to edit this plot.

  • Open the Style icon

  • Switch on Violins under Summary

  • Switch on Overlay under Summary

  • Switch on Colored under Summary

  • Select the Graph-based clustering node in the Color by section

  • Color by Graph-based clusters under Color and use the slider to decrease the Opacity

  • Open the Axes icon

  • Select the Graph-based clustering node in the X axis section

  • Change the X axis data to Graph-based clusters

  • Use the slider to increase the Jitter on the X axis (Figure 7)

  • Click the project name to return to the Analyses tab

To visualize all of the proteins at the same time, we can make a hierarchical clustering heat map.

  • Click the ANOVA data node

  • Click Exploratory analysis in the toolbox

  • Click Hierarchical clustering/heatmap

  • In the Cell order section, choose Graph-based clusters from the Assign order drop-down list

  • Click Finish to run with the other default settings

  • Double-click the Hierarchical clustering task node to open the heatmap

The heatmap can easily be customized using the tools on the left.

  • Open the Axes icon

  • Switch off Show Row labels

  • Increase the Font to 16 (Figure 8)

  • Activate the Transpose switch which will switch the Row and Column labels, so now the Row labels will be shown (Figure 9)

  • Open the Dendrograms icon

  • Choose Row color By cluster and change Row clusters to 4

  • Change Row dendrogram size to 80 (Figure 10)

  • In the Heatmap icon

  • Navigate to Range under Color

  • Set the Min and Max to -1.2 and 1.2, respectively

  • Change the Shape to Circle (Figure 11)

  • Switch the Shape back to Rectangle

  • Change the Color Palette by clicking on the color squares and selecting colors from the rainbow. Click outside of the selection box to exit this selection. The color options can be dragged alone the Palette to highlight value differences (Figure 12).

Feel free to explore the other tool options on the left to customize the plot further.

Differential Analysis, Visualization, and Pathway analysis - Gene Expression Data

We can use a similar approach to analyze the gene expression data.

  • Click the project name to return to the Analyses tab

  • Click the Gene Expression data node

  • Click the Antibody Capture data node

  • Click Statistics

  • Click Differential analysis

  • Click ANOVA then click Next

  • Click Cell type

  • Click Add factor

  • Click Next

  • Drag Activated B cells in the top panel

  • Drag Mature B cells in the bottom panel

  • Click Add comparison

The comparison should appear in the table as Activated B cells vs. Mature B cells.

  • Click Finish to run the statistical test

As before, this will generate an ANOVA task node and n ANOVA data node.

  • Double-click the ANOVA task node to open the task report (Figure 13)

Because more than 20,000 genes have been analyzed, it is useful to use a volcano plot to get an idea about the overall changes.

The Volcano plot opens in a new data viewer session, in a new tab in the web browser. It shows each gene as a point with cutoff lines set for P-value (y-axis) and fold-change (x-axis). By default, the P-value cutoff is set to 0.05 and the fold-change cutoff is set at |2| (Figure 14).

  • Click the ANOVA report tab in your web browser to return to the full report

We can filter the full set of genes to include only the significantly different genes using the filter panel on the left.

  • Click FDR step up

  • Type 0.05 for the cutoff and press Enter on your keyboard

  • Click Fold change

  • Set to From -2 to 2 and press Enter on your keyboard

The number at the top of the filter will update to show the number of included genes (Figure 15).

A task, Differential analysis filter, will run and generate a new Filtered Feature list data node. We can get a better idea about the biology underlying these gene expression changes using gene set or pathway enrichment. Note, you need to have the Pathway toolkit enabled to perform the next steps.

  • Click the Filtered feature list data node

  • Click Biological interpretation in the toolbox

  • Click Pathway enrichment

  • Make sure that Homo sapiens is selected in the Species drop-down menu

  • Click Finish to run

  • Double-click the Pathway enrichment task node to open the task report

The pathway enrichment results list KEGG pathways, giving an enrichment score and p-value for each (Figure 16).

To get a better idea about the changes in each enriched pathway, we can view an interactive KEGG pathway map.

  • Click path:hsa05202 in the Transcriptional misregulation in cancer row

The KEGG pathway map shows up-regulated genes from the input list in red and down-regulated genes from the input list in green (Figure 17).

Additional Assistance

Click in the CD45RA_TotalSeqB row

Click in the top right corner of the table to open a volcano plot

The plot can be configured using various tools on the left. For example, the Style icon can be used to change the appearance of the points. The X and Y-axes can be changed in the Axes icon. The Statistics icon can be used to set different Fold-change and P-value thresholds for coloring up/down-regulated genes. The in plot controls can be used to transpose the volcano plot (Figure 14).

Click to create a new data node including only these significantly different genes

If you need additional assistance, please visit to submit a help ticket or find phone numbers for regional support.

our support page
Filter Groups
Re-split the Matrix
Differential Analysis and Visualization - Protein Data
Differential Analysis, Visualization, and Pathway analysis - Gene Expression Data
Figure 1. Set up the Filter groups task to exlcude Doublets and cells that are not classified
Figure 2. Filter groups output
Figure 3. It is possible to re-split the merged matrix once again
Figure 4. Setting up a comparison for differentially expressed proteins
Figure 5. GSA report for protein expression data
Figure 6. CD45RA dot plot for all cells
Figure 7. Configure the dot plot using the tools on the left
Figure 8. Heatmap showing altered Axes labels
Figure 9. Transpose the Heatmap to switch the columns and rows
Figure 10. Configure the Dendrograms settings
Figure 11. Configure the Heatmap icon
Figure 12. Heatmap showing expression of protein markers after changing the Heatmap settings further
Figure 13. GSA report for the gene expression data
Figure 14. The volcano plot can be Configured using the icons on the left and in plot controls
Figure 15. Use the panel on the left to filter the list for significant genes
Figure 16. Results of pathway enrichment test
Figure 17. Transcriptional misregulation in cancer pathway with significant genes highlighted in green and red
Figure 18. Final CITE-Seq pipeline