LogoLogo
Illumina KnowledgeIllumina SupportSign In
Partek
  • Home
Partek
  • Overview
  • Partek Flow
    • Frequently Asked Questions
      • General
      • Visualization
      • Statistics
      • Biological Interpretation
      • How to cite Partek software
    • Quick Start Guide
    • Installation Guide
      • Minimum System Requirements
      • Single Cell Toolkit System Requirements
      • Single Node Installation
      • Single Node Amazon Web Services Deployment
      • Multi-Node Cluster Installation
      • Creating Restricted User Folders within the Partek Flow server
      • Updating Partek Flow
      • Uninstalling Partek Flow
      • Dependencies
      • Docker and Docker-compose
      • Java KeyStore and Certificates
      • Kubernetes
    • Live Training Event Recordings
      • Bulk RNA-Seq Analysis Training
      • Basic scRNA-Seq Analysis & Visualization Training
      • Advanced scRNA-Seq Data Analysis Training
      • Bulk RNA-Seq and ATAC-Seq Integration Training
      • Spatial Transcriptomics Data Analysis Training
      • scRNA and scATAC Data Integration Training
    • Tutorials
      • Creating and Analyzing a Project
        • Creating a New Project
        • The Metadata Tab
        • The Analyses Tab
        • The Log Tab
        • The Project Settings Tab
        • The Attachments Tab
        • Project Management
        • Importing a GEO / ENA project
      • Bulk RNA-Seq
        • Importing the tutorial data set
        • Adding sample attributes
        • Running pre-alignment QA/QC
        • Trimming bases and filtering reads
        • Aligning to a reference genome
        • Running post-alignment QA/QC
        • Quantifying to an annotation model
        • Filtering features
        • Normalizing counts
        • Exploring the data set with PCA
        • Performing differential expression analysis with DESeq2
        • Viewing DESeq2 results and creating a gene list
        • Viewing a dot plot for a gene
        • Visualizing gene expression in Chromosome view
        • Generating a hierarchical clustering heatmap
        • Performing biological interpretation
        • Saving and running a pipeline
      • Analyzing Single Cell RNA-Seq Data
      • Analyzing CITE-Seq Data
        • Importing Feature Barcoding Data
        • Data Processing
        • Dimensionality Reduction and Clustering
        • Classifying Cells
        • Differentially Expressed Proteins and Genes
      • 10x Genomics Visium Spatial Data Analysis
        • Start with pre-processed Space Ranger output files
        • Start with 10x Genomics Visium fastq files
        • Spatial data analysis steps
        • View tissue images
      • 10x Genomics Xenium Data Analysis
        • Import 10x Genomics Xenium Analyzer output
        • Process Xenium data
        • Perform Exploratory analysis
        • Make comparisons using Compute biomarkers and Biological interpretation
      • Single Cell RNA-Seq Analysis (Multiple Samples)
        • Getting started with the tutorial data set
        • Classify cells from multiple samples using t-SNE
        • Compare expression between cell types with multiple samples
      • Analyzing Single Cell ATAC-Seq data
      • Analyzing Illumina Infinium Methylation array data
      • NanoString CosMx Tutorial
        • Importing CosMx data
        • QA/QC, data processing, and dimension reduction
        • Cell typing
        • Classify subpopulations & differential expression analysis
    • User Manual
      • Interface
      • Importing Data
        • SFTP File Transfer Instructions
        • Import single cell data
        • Importing 10x Genomics Matrix Files
        • Importing and Demultiplexing Illumina BCL Files
        • Partek Flow Uploader for Ion Torrent
        • Importing 10x Genomics .bcl Files
        • Import a GEO / ENA project
      • Task Menu
        • Task actions
        • Data summary report
        • QA/QC
          • Pre-alignment QA/QC
          • ERCC Assessment
          • Post-alignment QA/QC
          • Coverage Report
          • Validate Variants
          • Feature distribution
          • Single-cell QA/QC
          • Cell barcode QA/QC
        • Pre-alignment tools
          • Trim bases
          • Trim adapters
          • Filter reads
          • Trim tags
        • Post-alignment tools
          • Filter alignments
          • Convert alignments to unaligned reads
          • Combine alignments
          • Deduplicate UMIs
          • Downscale alignments
        • Annotation/Metadata
          • Annotate cells
          • Annotation report
          • Publish cell attributes to project
          • Attribute report
          • Annotate Visium image
        • Pre-analysis tools
          • Generate group cell counts
          • Pool cells
          • Split matrix
          • Hashtag demultiplexing
          • Merge matrices
          • Descriptive statistics
          • Spot clean
        • Aligners
        • Quantification
          • Quantify to annotation model (Partek E/M)
          • Quantify to transcriptome (Cufflinks)
          • Quantify to reference (Partek E/M)
          • Quantify regions
          • HTSeq
          • Count feature barcodes
          • Salmon
        • Filtering
          • Filter features
          • Filter groups (samples or cells)
          • Filter barcodes
          • Split by attribute
          • Downsample Cells
        • Normalization and scaling
          • Impute low expression
          • Impute missing values
          • Normalization
          • Normalize to baseline
          • Normalize to housekeeping genes
          • Scran deconvolution
          • SCTransform
          • TF-IDF normalization
        • Batch removal
          • General linear model
          • Harmony
          • Seurat3 integration
        • Differential Analysis
          • GSA
          • ANOVA/LIMMA-trend/LIMMA-voom
          • Kruskal-Wallis
          • Detect alt-splicing (ANOVA)
          • DESeq2(R) vs DESeq2
          • Hurdle model
          • Compute biomarkers
          • Transcript Expression Analysis - Cuffdiff
          • Troubleshooting
        • Survival Analysis with Cox regression and Kaplan-Meier analysis - Partek Flow
        • Exploratory Analysis
          • Graph-based Clustering
          • K-means Clustering
          • Compare Clusters
          • PCA
          • t-SNE
          • UMAP
          • Hierarchical Clustering
          • AUCell
          • Find multimodal neighbors
          • SVD
          • CellPhoneDB
        • Trajectory Analysis
          • Trajectory Analysis (Monocle 2)
          • Trajectory Analysis (Monocle 3)
        • Variant Callers
          • SAMtools
          • FreeBayes
          • LoFreq
        • Variant Analysis
          • Fusion Gene Detection
          • Annotate Variants
          • Annotate Variants (SnpEff)
          • Annotate Variants (VEP)
          • Filter Variants
          • Summarize Cohort Mutations
          • Combine Variants
        • Copy Number Analysis (CNVkit)
        • Peak Callers (MACS2)
        • Peak analysis
          • Annotate Peaks
          • Filter peaks
          • Promoter sum matrix
        • Motif Detection
        • Metagenomics
          • Kraken
          • Alpha & beta diversity
          • Choose taxonomic level
        • 10x Genomics
          • Cell Ranger - Gene Expression
          • Cell Ranger - ATAC
          • Space Ranger
          • STARsolo
        • V(D)J Analysis
        • Biological Interpretation
          • Gene Set Enrichment
          • GSEA
        • Correlation
          • Correlation analysis
          • Sample Correlation
          • Similarity matrix
        • Export
        • Classification
        • Feature linkage analysis
      • Data Viewer
      • Visualizations
        • Chromosome View
          • Launching the Chromosome View
          • Navigating Through the View
          • Selecting Data Tracks for Visualization
          • Visualizing the Results Using Data Tracks
          • Annotating the Results
          • Customizing the View
        • Dot Plot
        • Volcano Plot
        • List Generator (Venn Diagram)
        • Sankey Plot
        • Transcription Start Site (TSS) Plot
        • Sources of variation plot
        • Interaction Plots
        • Correlation Plot
        • Pie Chart
        • Histograms
        • Heatmaps
        • PCA, UMAP and tSNE scatter plots
        • Stacked Violin Plot
      • Pipelines
        • Making a Pipeline
        • Running a Pipeline
        • Downloading and Sharing a Pipeline
        • Previewing a Pipeline
        • Deleting a Pipeline
        • Importing a Pipeline
      • Large File Viewer
      • Settings
        • Personal
          • My Profile
          • My Preferences
          • Forgot Password
        • System
          • System Information
          • System Preferences
          • LDAP Configuration
        • Components
          • Filter Management
          • Library File Management
            • Library File Management Settings
            • Library File Management Page
            • Selecting an Assembly
            • Library Files
            • Update Library Index
            • Creating an Assembly on the Library File Management Page
            • Adding Library Files on the Library File Management Page
            • Adding a Reference Sequence
            • Adding a Cytoband
            • Adding Reference Aligner Indexes
            • Adding a Gene Set
            • Adding a Variant Annotation Database
            • Adding a SnpEff Variant Database
            • Adding a Variant Effect Predictor (VEP) Database
            • Adding an Annotation Model
            • Adding Aligner Indexes Based on an Annotation Model
            • Adding Library Files from Within a Project
            • Microarray Library Files
            • Adding Prep kit
            • Removing Library Files
          • Option Set Management
          • Task Management
          • Pipeline managment
          • Lists
        • Access
          • User Management
          • Group Management
          • Licensing
          • Directory Permissions
          • Access Control Log
          • Failed Logins
          • Orphaned files
        • Usage
          • System Queue
          • System Resources
          • Usage Report
      • Server Management
        • Backing Up the Database
        • System Administrator Guide (Linux)
        • Diagnosing Issues
        • Moving Data
        • Partek Flow Worker Allocator
      • Enterprise Features and Toolkits
        • REST API
          • REST API Command List
      • Microarray Toolkit
        • Importing Custom Microarrays
      • Glossary
    • Webinars
    • Blog Posts
      • How to select the best single cell quality control thresholds
      • Cellular Differentiation Using Trajectory Analysis & Single Cell RNA-Seq Data
      • Spatial transcriptomics—what’s the big deal and why you should do it
      • Detecting differential gene expression in single cell RNA-Seq analysis
      • Batch remover for single cell data
      • How to perform single cell RNA sequencing: exploratory analysis
      • Single Cell Multiomics Analysis: Strategies for Integration
      • Pathway Analysis: ANOVA vs. Enrichment Analysis
      • Studying Immunotherapy with Multiomics: Simultaneous Measurement of Gene and Protein
      • How to Integrate ChIP-Seq and RNA-Seq Data
      • Enjoy Responsibly!
      • To Boldly Go…
      • Get to Know Your Cell
      • Aliens Among Us: How I Analyzed Non-Model Organism Data in Partek Flow
    • White Papers
      • Understanding Reads in RNA-Seq Analysis
      • RNA-Seq Quantification
      • Gene-specific Analysis
      • Gene Set ANOVA
      • Partek Flow Security
      • Single Cell Scaling
      • UMI Deduplication in Partek Flow
      • Mapping error statistics
    • Release Notes
      • Release Notes Archive - Partek Flow 10
  • Partek Genomics Suite
    • Installation Guide
      • Minimum System Requirements
      • Computer Host ID Retrieval
      • Node Locked Installation
        • Windows Installation
        • Macintosh Installation
      • Floating/Locked Floating Installation
        • Linux Installation
          • FlexNet Installation on Linux
        • Installing FlexNet on Windows
        • License Server FAQ's
        • Client Computer Connection to License Server
      • Uninstalling Partek Genomics Suite
      • Updating to Version 7.0
      • License Types
      • Installation FAQs
    • User Manual
      • Lists
        • Importing a text file list
        • Adding annotations to a gene list
        • Tasks available for a gene list
        • Starting with a list of genomic regions
        • Starting with a list of SNPs
        • Importing a BED file
        • Additional options for lists
      • Annotation
      • Hierarchical Clustering Analysis
      • Gene Ontology ANOVA
        • Implementation Details
        • Configuring the GO ANOVA Dialog
        • Performing GO ANOVA
        • GO ANOVA Output
        • GO ANOVA Visualisations
        • Recommended Filters
      • Visualizations
        • Dot Plot
        • Profile Plot
        • XY Plot / Bar Chart
        • Volcano Plot
        • Scatter Plot and MA Plot
        • Sort Rows by Prototype
        • Manhattan Plot
        • Violin Plot
      • Visualizing NGS Data
      • Chromosome View
      • Methylation Workflows
      • Trio/Duo Analysis
      • Association Analysis
      • LOH detection with an allele ratio spreadsheet
      • Import data from Agilent feature extraction software
      • Illumina GenomeStudio Plugin
        • Import gene expression data
        • Import Genotype Data
        • Export CNV data to Illumina GenomeStudio using Partek report plug-in
        • Import data from Illumina GenomeStudio using Partek plug-in
        • Export methylation data to Illumina GenomeStudio using Partek report plug-in
    • Tutorials
      • Gene Expression Analysis
        • Importing Affymetrix CEL files
        • Adding sample information
        • Exploring gene expression data
        • Identifying differentially expressed genes using ANOVA
        • Creating gene lists from ANOVA results
        • Performing hierarchical clustering
        • Adding gene annotations
      • Gene Expression Analysis with Batch Effects
        • Importing the data set
        • Adding an annotation link
        • Exploring the data set with PCA
        • Detect differentially expressed genes with ANOVA
        • Removing batch effects
        • Creating a gene list using the Venn Diagram
        • Hierarchical clustering using a gene list
        • GO enrichment using a gene list
      • Differential Methylation Analysis
        • Import and normalize methylation data
        • Annotate samples
        • Perform data quality analysis and quality control
        • Detect differentially methylated loci
        • Create a marker list
        • Filter loci with the interactive filter
        • Obtain methylation signatures
        • Visualize methylation at each locus
        • Perform gene set and pathway analysis
        • Detect differentially methylated CpG islands
        • Optional: Add UCSC CpG island annotations
        • Optional: Use MethylationEPIC for CNV analysis
        • Optional: Import a Partek Project from Genome Studio
      • Partek Pathway
        • Performing pathway enrichment
        • Analyzing pathway enrichment in Partek Genomics Suite
        • Analyzing pathway enrichment in Partek Pathway
      • Gene Ontology Enrichment
        • Open a zipped project
        • Perform GO enrichment analysis
      • RNA-Seq Analysis
        • Importing aligned reads
        • Adding sample attributes
        • RNA-Seq mRNA quantification
        • Detecting differential expression in RNA-Seq data
        • Creating a gene list with advanced options
        • Visualizing mapped reads with Chromosome View
        • Visualizing differential isoform expression
        • Gene Ontology (GO) Enrichment
        • Analyzing the unexplained regions spreadsheet
      • ChIP-Seq Analysis
        • Importing ChIP-Seq data
        • Quality control for ChIP-Seq samples
        • Detecting peaks and enriched regions in ChIP-Seq data
        • Creating a list of enriched regions
        • Identifying novel and known motifs
        • Finding nearest genomic features
        • Visualizing reads and enriched regions
      • Survival Analysis
        • Kaplan-Meier Survival Analysis
        • Cox Regression Analysis
      • Model Selection Tool
      • Copy Number Analysis
        • Importing Copy Number Data
        • Exploring the data with PCA
        • Creating Copy Number from Allele Intensities
        • Detecting regions with copy number variation
        • Creating a list of regions
        • Finding genes with copy number variation
        • Optional: Additional options for annotating regions
        • Optional: GC wave correction for Affymetrix CEL files
        • Optional: Integrating copy number with LOH and AsCN
      • Loss of Heterozygosity
      • Allele Specific Copy Number
      • Gene Expression - Aging Study
      • miRNA Expression and Integration with Gene Expression
        • Analyze differentially expressed miRNAs
        • Integrate miRNA and Gene Expression data
      • Promoter Tiling Array
      • Human Exon Array
        • Importing Human Exon Array
        • Gene-level Analysis of Exon Array
        • Alt-Splicing Analysis of Exon Array
      • NCBI GEO Importer
    • Webinars
    • White Papers
      • Allele Intensity Import
      • Allele-Specific Copy Number
      • Calculating Genotype Likelihoods
      • ChIP-Seq Peak Detection
      • Detect Regions of Significance
      • Genomic Segmentation
      • Loss of Heterozygosity Analysis
      • Motif Discovery Methods
      • Partek Genomics Suite Security
      • Reads in RNA-Seq
      • RNA-Seq Methods
      • Unpaired Copy Number Estimation
    • Release Notes
    • Version Updates
    • TeamViewer Instructions
  • Getting Help
    • TeamViewer Instructions
Powered by GitBook
On this page
  • What is Gene set enrichment?
  • Running Gene set Enrichment
  • Task report
  • Interactive KEGG pathway maps
  • Coloring the map
  • Feature details
  • Visualizing gene set enrichment results
  • References
  • Additional Assistance

Was this helpful?

Export as PDF
  1. Partek Flow
  2. User Manual
  3. Task Menu
  4. Biological Interpretation

Gene Set Enrichment

PreviousBiological InterpretationNextGSEA

Last updated 4 months ago

Was this helpful?


What is Gene set enrichment?

Enrichment analysis is a technique commonly used to add biological context to a list of genes, such as list of significant genes filtered from differential analysis report. The procedure is based on assigning genes to groups and then finding overrepresented groups in filtered gene lists using a Fisher's exact test.

Running Gene set Enrichment

Gene set enrichment task can be invoked on a differential analysis output (or filtered differential analysis output) data node or filtered count matrix data node. Since the data node including all the features will serve as background, to get a meaningful result, always use a data node containing subset of features to invoke this task. Only gene names will be used in the computation.

  • Click a Feature list data node

  • Click the Biological interpretation section of the toolbox

  • Click Gene set enrichment

  • There are two options for Database. KEGG database requires a special license (Figure 1).

Partek distributes Gene Ontology (GO) for human and mouse genomes, a bioinformatics initiative to unify the representation of gene and gene product attributes across various species [1, 2].

  • Select feature identifier (optional) can be used to specify the feature format (e.g. Gene name, Gene ID, Feature ID).

The background gene list is used as the list of possible genes. By default, this is the genes included in the selected gene set database. If your assay limits the genes that could be detected, you may want to specify a background list.

  • Click Finish to run

The result is stored under an Enrichment task node. To open it, double click on the node or select the respective Task report from the context sensitive menu.

Task report

As previously mentioned, if you are using the GO gene sets distributed by Partek, the GO identifiers in the first column are hyperlinks to the Gene Ontology web-site entries (an example shown in Figure 6).

Interactive KEGG pathway maps

When KEGG database is used, on the enrichment task report, when click on a pathway ID in the Gene set column, a KEGG pathway gene network picture is displayed (Figure 7).

Each rectangle on the map represents a gene product in the pathway. Gene products are mostly proteins coded by a gene or group of genes, but they could be RNA too. Related pathways are shown as large rounded rectangles. Chemical compounds, DNA or other molecules are shown as circles.

Coloring the map

The pathway map is colored by the first fold-change column in the input Feature list data node. The control panel on the left can be used to configure the colors of the pathway map. In all options, rectangles colored white do not have gene information. Options for coloring include:

  • Fixed color: all genes are colored black.

  • Genes in list: all genes in the list are colored, default color is yellow, but this can be configured. Genes not in the list are black.

  • Statistics in the gene list: .e.g FDR, p-value, Fold change etc. Colors can be customized by clicking on the color square to change.

Feature details

Mousing over a rectangle shows the genes indicated by the rectangle in the tooltip (Figure 8). Genes are listed on rows with all aliases in the KEGG database included on the row. Genes that are in the list and used to color the rectangle is shown in bold.

On KEGG pathway maps that include chemical compounds, the chemical structure is shown in the tooltip on mouse-over (Figure 9).

Clicking a rectangle opens the page for that gene or group of genes on the KEGG website in a new tab in your web browser.

Visualizing gene set enrichment results

If the gene set enrichment table has fewer than 100 results (rows), the categories can be visualized in the Data Viewer. Otherwise, a notification is displayed in the top left corner (Figure 10).

If needed, filter down the number results, for instance by using a cut-off based on the enrichment score. Type in the cut-off value in the text box beneath the Enrichment score and hit enter (an example is shown in Figure 11). Once the number or results falls below 100, a link to the Data Viewer will be displayed (Figure 8). Click on the View plots in Data Viewer link to open a new Data Viewer session.

Two plots are loaded into Data Viewer (Figure 12). Both plots show enrichment score on the horizontal axis and gene ontology categories (i.e. the ones present in the gene enrichment table) on the vertical axis. The plots show enrichments scores (Enrichment score column of the gene ontology table) and - in addition - the plot on the left uses color range to depict enrichment P-value (green = low, red = high P-value).

The same functionality is available for pathway enrichment results.

References

  1. Ashburner M, Ball CA, Blake JA et al. Gene Ontology: tool for the unification of biology. Nat Genetics. 2000; 25:25-29.

  2. The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015; 43:D1049-1056.Recommended citations from the Geneontology.org website

Additional Assistance

Gene set database is user defined database, see more details in the chapter. The gene sets available for the current Assembly are listed under the Gene set database drop-down list (Figure 2). The assembly is automatically selected, if possible. If the assembly cannot be detected, you can specify it using the drop-down.

Specify the background gene list (optional) can be used for a feature list. Select the list using the drop-down. .

Figure 3 shows an example Gene set enrichment task report using GO database. The table contains one gene set per row (Gene set column; the column entries are hyperlinks when using the distributed GO gene sets), with the category name in the Description column. The categories are ranked by the Enrichment score, which is the negative natural logarithm of the enrichment p-value (P-value column) derived from Fisher's exact test on the underlying contingency table. The higher the enrichment score, the more overrepresented the GO category is within the input list of significant genes. The columns can be searched by typing in the search term in the respective box (and hitting Enter), or sorted by selecting the double arrow icon ( ).

The contingency table (Figure 4) can be displayed by selecting the View gene breakdown chart icon on the right (). The term "list" refers to the list of significant genes, while the term "set" refers to the respective GO category. The first row of the contingency table is also seen in the report, namely the Genes in list and Genes not in list columns.

The View extra details () button provides additional information on the GO category (Figure 5). In addition to the details already given in the report, a full list of Genes in list and Genes not in list can be inspected and downloaded (Download data) to the local computer as a text file. Use the arrow to expand these sections.

Click the Save image icon to download a PNG file showing the configured KEGG pathway map to your local computer.

If you need additional assistance, please visit to submit a help ticket or find phone numbers for regional support.

Adding a Gene Set
Click here for more information on List management
our support page
What is Gene set enrichment?
Running Gene set Enrichment
Task report
Interactive KEGG pathway maps
Coloring the map
Feature details
Visualizing gene set enrichment results
References
Figure 1. Selecting KEGG database
Figure 2. Selecting user defined gene set database
Figure 3. Go enrichment report (truncated). Gene set column contains Gene Ontology identifiers (hyperlinks). Category labels are in the Description column. Enrichment score: negative natural logarithm of the enrichment P-value derived from the Fisher's exact test. Genes in list: number of genes that are present both in the list of significant genes and the gene set (GO category). Genes not in list: number of genes that are present in the gene set, but are not present in the list of significant genes. The column on the right contains links to gene breakdown chart and extra details
Figure 4. Contingency table used to calculate the enrichment p-value. List refers to the list of significant genes, set refers to the gene ontology category
Figure 5. Gene ontology enrichment extra details
Figure 6. Selecting a GO category in the table report opens up a browser and displays additional information on that category via GO web-page
Figure 7. KEGG pathway map
Figure 8. Checking genes represented by a rectangle
Figure 9. Viewing chemical compound
Figure 10. If the table has more than 100 rows, visualization of results is not possible
Figure 11. Use the View plots in Data Viewer link to visualize the enrichment results. The link is not visible if the table contains more than 100 rows
Figure 12. Visualizing gene ontology results. Vertical axis shows the gene ontology categories present in the underlying gene ontology table